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Abstract. Assuming one wants to design the most cost-effective robot
for some task, how difficult is it to choose the robot’s actuators? This
paper addresses that question in algorithmic terms, considering the prob-
lem of identifying optimal sets of actuation capabilities to allow a robot
to complete a given task. We consider various cost functions which model
the cost needed to equip a robot with some capabilities, and show that
the general form of this problem is NP-hard, confirming what many per-
haps have suspected about this sort of design-time optimization. As a
result, several questions of interest having both optimality and efficiency
of solution is unlikely. However, we also show that, for some specific
types of cost functions, the problem is either polynomial time solvable
or fixed-parameter tractable.

1 Introduction

Research on autonomous robots is entering a phase of maturation: already there
is general agreement on the centrality of estimation and planning problems and
there is broad consensus on basic representations and algorithms to address the
underlying problems; the last decade has seen the emergence of (open source)
software infrastructure and adoption is increasingly widespread; and an inchoate
industry is pursuing profitable applications. Some academic researchers have
begun to move away from questions concerning how to program a given robot,
turning to questions of the form “Given resource constraints c, d, and e, what is
the ideal robot, considering that design choices influence feasible behavior?”

Evidence for this growing interest can be seen in recently held workshops
with titles such as ‘Minimality & Design Automation’ (RSS’16), ‘Minimality
and Trade-offs in Automated Robot Design’ (RSS’17), and ‘Workshop on Au-
tonomous Robot Design’ (ICRA’18)4. The research is, naturally, focused on the
development of algorithmic tools to help answer such design questions. Several
ideas have been proffered as useful ways to tackle robot design problems. They
display great and refreshing variety, including angles on the problem that em-
phasize fabrication, prototyping and manufacturability [5, 7, 11, 14, 15]; formal

4 For a summative report of the first two workshops, presented at the third, see [18].
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Fig. 1: A motivating example that illustrates how, for an otherwise simple planning
problem, straightforward design constraints can quickly lead to complex considerations.
[top] Suppose we want to design a cleaning robot that is able to navigate to any room
in the house. [bottom] The robot’s ability to navigate spills, puddles, and toys depends
on the particular design choices we make about what resources with which the robot
is to be equipped.

methods for (controller and hardware) synthesis of robots [12,15,16,23,25]; sim-
ulators and methods for interactive design [9]; compositional frameworks along
with catalogs of components [1,2,22]; software for fault tracking and component-
based identification [27]; and so on.

This paper deals with design problems that we believe many may already
suspect to be difficult problems, but for which actual hardness results have not
appeared in the literature. (At least to the authors, somewhat surprisingly!)
Though many aspects of the hardness of planning have been examined, prior
work has tended consider costs associated with plan execution and which often
bear little relation to the cost of realizing the particular robot design. It is
surprising that even rather immediate questions about robot design lack formal
analysis from the complexity theoretic point of view. Thus, we begin to remedy
this fact.

To help make matters concrete, consider the example illustrated in Figure 1.
We are interested in designing a home cleaning robot and, to be effective, the
robot must be able to navigate from region to region within the environment.
The ability to navigate depends on the actuators that the robot is equipped with
and their ability depends on the particular assortment of clutter that is encoun-
tered: ‘spills’ and ‘puddles’ and ‘toys’. The cheapest wheels are w0 which, though
inexpensive, can’t surmount any of these three, while wheel w1 operates fine in
wet conditions, but still fails with toys. The third option, w2, can convey the
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robot over all three, but requires a heavier duty motor (m1) than the standard
one (m0). If any robot is equipped with a scoop s0, it is no longer hindered by
dry detritus, though the scoop is ineffective with liquids. And, alas, the chassis
we have available can’t support both s0 and m1 simultaneously.

Our task requirements dictate that the cleaning robot ought to be able move
from any room to any other, the morning after a party, that is, under worst-
case conditions. Here, multiple designs satisfy these task requirements while also
respecting the component limitations (namely the chassis weight requirement).
Even if identifying that set of designs doesn’t seem too onerous, the fact that the
solutions in our example seem to need, at a glance, to satisfy distinct discrete
constraints (overcome wet or dry obstacles, or both), and may do so in multiple
ways, suggests that the solution set has a non-trivial combinatorial structure.
One might imagine, for more complex problems with greater varieties of available
components, that the complexity of this structure may scale exponentially.

We are interested in minimizing some cost, typically over the set of all use-
ful designs. Suppose we are given some reasonable cost function that assigns a
cost to every set of resources—reasonableness involves properties such as non-
negativity. Perhaps, in a mood of generosity, we opt to simplify things (ignoring
bulk purchase pricing breaks and economies of scale) and assume monotonicity
in costs. Can one find the cheapest design efficiently then?

This paper formalizes questions about certain robot design choices and their
effect on the resulting robot’s ability to plan and achieve goals. The work con-
tributes hardness results primarily, but the purpose and import of such analyses
is not merely to underscore that we expect to have to forgo overall/global op-
timality, but also to help understand whether thinking about such problems
is fundamentally impractical or whether there is hope for good approximation
algorithms.

2 Related Work

Having already provided broad context for robot design questions, here we draw
attention to particular threads bearing an especially close relationship to this pa-
per. Detailed connections to the authors’ prior work is postponed until Section 6,
after presentation of the technical results.

Censi [1, 2] introduced a theory of co-design, which adopts a poset-based
optimization point of view in order to relate functionality, implementations, and
resources to each another. He demonstrates his methodology by applying it to
questions about the minimal resources required to realize some functionality.
This question, in various forms, has a rich history (cf. [4,19,20,26]). An especially
noteworthy aspect of Censi’s theory is how monotone properties enable efficient
optimization; his work contrasts with the present work—here monotonicity offers
only a limited salve. Indeed, at least when choosing the sets of actions with which
to equip a robot, planning problems induce a multi-stage interaction between the
various options, making it difficult to ensure optimality.
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It is also worth pointing out the influential work of Hauser [10] who examined
a variant on motion planning where, starting with an infeasible problem, he seeks
the minimal set of constraints to be removed to make the problem solvable.
In a sense, this is the inverse of the problem we examine: we ask not about
removing challenging elements from the problem, but rather about the addition
of capabilities to the robot.

3 Definitions and Problem Formulation

This section presents some definitions necessary to introduce the algorithmic
problem addressed in the balance of the paper.

3.1 Planning problems and plans

We are interested in reasoning about the ability of robots equipped with varying
action capabilities to complete certain tasks. Following our earlier work [8], we
model both planning problems and the plans that solve them using procrustean
graphs.

Definition 1. A procrustean graph (or p-graph) is a bipartite directed graph
G = (V0, V, E, lu, ly, U, Y ) in which:

1. The finite set of states V contains two disjoint kinds of states called action
states Vu and observation states Vy, with V = Vu ∪ Vy.

2. The multiset of edges E = Eu ∪ Ey is composed of action edges Eu and
observation edges Ey.

3. Each action edge e ∈ Eu goes from an action state to an observation state,
and is labeled with a finite nonempty set of actions lu(e) drawn from the
action space U .

4. Likewise, each observation edge e ∈ Ey goes from an observation state to an
action state, and is labeled with a finite nonempty set of observations ly(e)
drawn from an observation space Y .

5. The set V0 ⊆ V represents a nonempty set of initial states. All states V0
should be of the same kind: either V0 ⊆ Vu or V0 ⊆ Vy.

The interpretation is that a p-graph describes a set of event sequences that
alternate between actions and observations. We say that an event sequence—
that is, a sequence of actions and observations— is an execution on a p-graph if
there exists some start state in the p-graph from which we can trace the sequence,
following edges whose labels include each successive event in the sequence. For
two p-graphs G1 and G2, we say that an event sequence is a joint execution if it
is an execution for both G1 and G2.

For simplicity, this paper focuses on state-determined p-graphs, which are
those where, for any given state, the labels on the edges departing that state are
mutually disjoint, and where V0 is a singleton. Any execution can be traced in
no more than one way in such p-graphs.

We can use p-graphs to model both planning problems and plans.
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Definition 2. A planning problem is a p-graph G with a goal region Vgoal ⊆
V (G). A plan is a p-graph P with termination region Pterm ⊆ V (P ).

We direct the reader to look again at the example in Figure 1. It is clear,
certainly, how a planning problem involving motion from one particular room to
another—when both rooms are given—can be posed as a p-graph with a goal
region. A relatively straightforward extension, leveraging the ability to designate
multiple states as start states, can express the problem of being able to transit
from any room to any other. Specifically, one would combine the individual p-
graphs for specific start and goal pairs, and then perform an expansion of this
combined graph to a state-determined presentation.

Informally, we say that a plan is safe on a planning problem, if the plan has
observation edges for any observation that might be generated by the planning
problem at any reachable state pair, and likewise the planning problem has
action edges for any action that might be generated by the plan. We say that a
plan is finite on a planning problem if there is some upper bound on the length
of all joint executions. (We omit the complete definitions of safe and of finite,
which are somewhat tedious, referring the reader instead to [8].)

Now we can define the notion of a plan solving a planning problem.

Definition 3. A plan (P, Pterm) with at least one execution solves a planning
problem (W,Vgoal) if P is finite and safe onW , and every joint-execution e1 · · · ek
of P on W either reaches a vertex in Pterm, or is a prefix of some execution that
does and, moreover, all the e1 · · · ek that reach a vertex v ∈ V (P ) with v ∈ Pterm,
reach a vertex w ∈ V (W ) with w ∈ Vgoal.

The intuition here is that a plan solves a planning problem for every possible
joint execution eventually terminates in the goal region.

3.2 Design costs

In this paper, we are interested specifically in plans that minimize a design cost
function, which depends on which actions are utilized in a plan. Note that we are
concerned here only with each action’s presence in (or absence from) the plan in
question—we are not concerned with how many times an action is carried out
on any particular execution of a plan. The next two definitions formalize this
idea.

Definition 4. For an action set U , a cost function c : 2U → R assigns a real
number cost to each subset of U .

Definition 5. For any plan (P, Pterm) that solves planning problem (W,Vgoal),
we write A(P,W ) ⊆ U to denote the set of actions that appear in any joint
execution of P on W . We then define the design cost of P on W as c(A(P,W )).

When the planning problem W is clear from the context, we overload the
notation slightly by writing A(P ) for A(P,W ) and likewise c(P ), instead of
c(A(P,W )).



6

The essential idea entailed by Definitions 4 and 5 is that c is a measure of the
cost of a plan that depends only upon which actions are used by the plan, rather
than upon how frequently those actions are used when the plan is executed. The
intent is to establish a dependence between c(P ) and the cost of constructing
a robot that is capable of executing each action in A(P ). Finding a plan that
minimizes this design cost can give some insight into the simplest robots, in the
sense of actuator complexity, that can solve the planning problem.

Some example cost functions, intended to illustrate the expressive flexibility
of the definitions, follow.

Example 6 (counter design cost). Given a plan P , consider the design cost
c(P ) = |A(P )|. This cost function simply counts number of actions utilized by
P . By minimizing this counter design cost, we minimize the number of distinct
actions used in the plan. �

Example 7 (weighted sum design cost). We can generalize the counter
design cost by defining a weight function w : U → R that assigns a specific cost
to each action, and then defining c(P ) =

∑
u∈A(P ) w(u). �

Example 8 (binary design cost). Suppose we are given a set of actions A′

that a robot designer would prefer to use, if possible. Define cA′ : 2U → {0, 1}
as

cA′(P ) =

{
0 if A(P ) ⊆ A′

1 otherwise
.

For a given set of actions A′ and a plan P , design cost cA′ , called a binary design
cost, gives a value of 0 if all actions used to carry out P are from the preferred
set A′, and a value of 1 if some additional action, not in A′, is used. �

Example 9 (ordered actions). Suppose we have a choice of options for which
actuators to include, each of which subsumes its predecessors, both in ability
and in expense. We would like to identify which of these options is the simplest
that suffices to solve a particular planning problem. We can model this kind
of situation by assuming that U is a finite ordered set U = {u1, . . . , un}, and
defining

c(P ) = maxA(P ). �

Example 10 (monotone cost functions). Another natural class of cost func-
tions are those that are monotone, in the following sense: A cost function is
monotone if, for any sets U1 ⊆ U and U2 ⊆ U , we have

U1 ⊆ U2 =⇒ c(U1) ≤ c(U2).

Monotone cost functions are interesting because they capture the eminently
sensible idea that adding additional abilities to the robot should not decrease
the cost. Notice in particular that the counter design cost (Example 6), binary
design cost (Example 8), and ordered action design cost functions (Example 9)
are all monotone.

�
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We can now state the main algorithmic problem. Following the standard
pattern, we consider both optimization and decision versions of the problem.

Decision Problem: Design minimization (DecDM)
Input: A planning problem (G,Vgoal), where G is state-determined, a cost

function c, and a real number k.
Output: Yes if there is a plan (P, Pterm) that solves (G,Vgoal), with design

cost c(A(P,W )) ≤ k.
No otherwise.

Optimization Problem: Design minimization (OptDM)
Input: A planning problem (G,Vgoal) with state-determined G, and cost

function c.
Output: A plan (P, Pterm) that can solve (G,Vgoal) such that the design cost

of P is minimal.

We can also form specialized versions of each of these problems by placing
restrictions on the design cost function c. Our objective, in the following sections,
is to classify the types of design cost functions for which this problem can be
solved efficiently, and the types for which these problems are hard.

4 Hardness of Design Cost Minimization

In this section, we prove that the decision version of the design cost minimization
problem is NP-complete.

4.1 The General Case

Our proof proceeds by reduction from the standard set cover problem, which is
known to be NP-complete [13]:

Decision Problem: SetCover
Input: A universe set R with n elements, a set T includingm sets T1, . . . , Tm

such that
⋃m
i=1 Ti = R, and an integer k.

Output: Yes if there is some set I ⊆ T such that I covers all elements of R
and the size of I is at most k.
No otherwise.

Given an instance (R, T, k) of SetCover problem, we construct an instance
of (G,Vgoal, c, k′) of DecDM as follows:

1. Begin with an empty p-graph G. Choose U = {u1, . . . , um}, with one action
for each of the sets in T , for its action space. Choose Y = {�}, a singleton
set containing a dummy observation, for its observation space.

2. For each element xi ∈ R of the universe R, add to G an action state qi and
an observation state oi. In addition, insert an extra action state qn+1 into G.
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3. From each action state qi, except qn+1, connect the corresponding observa-
tion state oi by a directed edge ei. Determine the label lu(ei) as follows: The
label for edge ei includes action uj if and only if the set Tj contains xi. That
is, we set lu(ei) = {uj | xi ∈ Tj}.

4. Connect each observation state oi to the subsequent action state qi+1 with a
directed edge e′i, labeled with the sole observation �, so that ly(e′i) = {�}.

5. Designate v0 = {q1} as the only initial state of G.
6. Designate Vgoal = {qn+1} as the goal region of the planning problem.
7. For design cost function, choose a counter design cost function,

c(P ) = |A(P )|.
8. Select k′ = k.

Figure 2 shows an example of this construction. Note that the time needed for
this construction is polynomial in the input size.

Next, we prove that this construction is indeed a reduction from SetCover
to DecDM. The intuition is that each action state in the constructed planning
problem acts as a sort of ‘gate’ to check whether a certain element has been
covered. If enough elements have been selected from T to fully cover R, then the
corresponding plan will be able to transition through each of these gates to the
goal. If not, not. The next two lemmata make this idea more precise.

Lemma 1. For any instance (R, T, k) of SetCover, consider the DecDM
instance (G,Vgoal, c, k

′) constructed as described above. If there exists a subset of
T of size at most k that covers R, then there exists a plan (P, Pterm) that solves
(G,Vgoal), for which c(P ) ≤ k.

Proof: Let I ⊆ T denote a coverage set for R, which has |I| ≤ k. To produce
a plan (P, Pterm), we start with a copy of the constructed planning problem
(G,Vgoal), and remove fromG all action labels that do not correspond to elements
of I. That is, for any i for which Ti /∈ I, we remove ui from P . Note that
Vgoal = Pterm = {qn+1}. Clearly c(P ) = |I| ≤ k. So it remains only to show that
(P, Pterm) solves (G,Vgoal).

First, we prove that P is finite and safe on G. Since the construction yields
a linear chain of events in both G and P then there are joint-executions with
lengths from 0 to at most 2n. Thus, P is finite on G. Note also that, according
to the construction of G and P , we can conclude that for every joint-execution
e1 · · · ek on P and G that leads to v ∈ P and w ∈ G, if v is an action state
then the label set of action edge e, originating at v, is a subset of label set of
action edge e′, originating at w. We also know that P and G have the same
single observation label � for each of their observation states. Therefore, P is
safe on G.

Because of the shared linear chain form of both G and P and existence of
only one initial state and one goal state, there is one unique joint execution that
reaches Vterm in P , which by construction also reaches Vgoal in G. The linear
chain structure also ensures that every other joint execution is a prefix of this
one, which implies that every joint-execution e1 · · · ek on P and G either leads
to the goal state qn+1 or is a prefix of some execution that leads to qn+1, as
required by Definition 3. Therefore, (P, Vterm) solves (G,Vgoal). �
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Fig. 2: An example of the construction of a DecDM instance from a Set-
Cover instance. Given a set cover instance with R = {1, 2, 3, 4}, T =
{{2, 3, 4}, {1, 3}, {2, 4}, {1, 2}} and k = 2, we construct the planning problem shown
on the left. Every subset of T that covers R corresponds to a plan that can reach Vgoal

from the initial state. For this example, we can cover R in the SetCover instance by
choosing {1, 3} and {2, 4}; likewise one can solve the planning problem using only the
actions u2 and u3.
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Lemma 2. For any instance (R, T, k) of SetCover, consider the DecDM
instance (G,Vgoal, c, k) constructed as described above. If there exists a plan
(P, Pterm) that solves (G,Vgoal), for which c(P ) ≤ k, then there exists a sub-
set of T of size at most k that covers R.

Proof: Let (P, Pterm) be some plan with c(P ) ≤ k that solves (G,Vgoal).
Consider some execution e1 · · · em on P . We may assume it reaches a vertex in
Pterm without sacrificing generality for, if it does not, it is certainly the prefix of
some execution which does, according to Definition 3. Thus, when em arrives at
a vertex in Pterm ⊆ V (P ), it must be that e1 · · · em reaches a vertex in Vgoal ⊆
V (W ). But, by construction of G, that means e1 · · · em = ui1 � ui2 � . . . uin�,
and we see that n = |R|. Define I =

{
Tj ∈ T | j ∈ {i1, i2, . . . , in}

}
where j is

taken over the set simply collecting the indices of the actions in the execution.
Clearly I ⊆ T and, because Tx 7→ ux corresponds elements of I with A(P ) in a
one-to-one fashion, |I| = |A(P )| = c(P ) ≤ k.

All that remains is to show that I covers R. Reaching the goal state requires
transiting, linearly, through q1o1q2 . . . onqn+1. So, for any w ∈ R, the action uiw
was used to transition from action vertex qiw to observation vertex oiw en route
to qn+1. That means Tiw ∈ I and, since uiw is a feasible action from qiw , the
construction ensures that w ∈ Tiw . �

These two lemmas lead directly to the following result.

Theorem 1. DecDM is NP-complete.

Proof: We need to show that DecDM is in both NP and NP-hard. For the
former, we must be able to verify that a given instance of DecDM is a Yes
instance efficiently. For any positive instance, there is a solution no larger than
W via Theorem 27 of [8], the argument therein carrying over when considering
plans subject to some design cost c(P ) ≤ k. Such a plan, which is itself state-
determined, can be used as a certificate. Confirming that this plan does indeed
solve the planning problem is straightforward via backchaining and, since both
the plan andW are state-determined, this takes polynomial time. For the latter,
we must show a polynomial-time reduction from a known NP-complete problem
to DecDM. Part 6 of Karp’s ‘Main Theorem’ [13] establishes that SetCover
is NP-complete, and Lemmas 1 and 2 establish that the construction described
above is indeed a reduction. �

4.2 Special cases that are also hard

Given the kind of hardness result expressed in Theorem 1, one reasonable follow-
up question is to consider various kinds of restrictions to the problem, in hope
that some natural or interesting special cases may yet be efficiently solvable.

However, notice that the cost function c used in the reduction is the counter
design cost (recall Example 6). This leads immediately to several stronger results.

Corollary 1 DecDM, restricted to weighted sum cost functions (Example 7),
is NP-complete.
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Proof: Use the same reduction as in Theorem 1, but replace the counter design
cost c with a weighted sum cost function in which each action has weight 1. �

Corollary 2 DecDM, restricted to monotone design cost functions (Exam-
ple 10), is NP-complete.

Proof: The reduction in Theorem 1 uses counter design cost, which happens
to be monotone. �

(The astute reader will note that we have not yet referred back to Example 8
nor Example 9; we revisit these in Section 5.)

4.3 Hardness of approximation

Another avenue of attack for a hard problems is to try to find efficient approxi-
mation algorithms that can guarantee to provide solutions close to the optimal.
Unfortunately, we can show that design cost minimization is hard even to ap-
proximate.

Theorem 2. For every ε > 0, OptDM is NP-hard to approximate to within
ratio (1− ε) lnn.

Proof: Let ε > 0. Suppose, a contrario, that there exists a polynomial time
approximation algorithm A that solves OptDM with ratio (1 − ε) lnn. For a
given instance (G,Vgoal, c) of OptDM, let OPT(G,Vgoal, c) denote the smallest
cost, according to c, for a plan that solves (G,Vgoal). Similarly, let A(G,Vgoal, c)
denote the cost of the output plan generated by algorithm A. By construction,
we have A(G,Vgoal, c) ≤ (1− ε) lnn OPT(G,Vgoal, c).

Under this assumption, we introduce the following polynomial-time approx-
imation algorithm, called B, for SetCover.

1. For a given instance (R, T ) of SetCover, we construct a planning problem
using the construction in Section 4.1.

2. We choose counter design cost for c, and execute algorithm A to find a plan
whose design cost is within an (1− ε) lnn factor of optimal.

3. Then, using Lemma 2, we recover a set cover for R from the extracted plan.

We write B(R, T ) for the size of the set cover generated by algorithm B and
OPT(R, T ) for the minimum coverage set size. Note that the size of this set
cover is equal to the design cost for the plan, so that B(R, T ) = A(G,Vgoal, c).
We know also know, from Lemmas 1 and 2, that OPT(G,Vgoal, c) = OPT(R, T ).

Thus, for sufficiently large n, we have

B(R, T ) = A(G,Vgoal, c)

≤ (1− ε) lnnOPT(G,Vgoal, c)

= (1− ε) lnnOPT(R, T ).
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Therefore, we have a polynomial-time approximation algorithmB for SetCover
with approximation ratio (1−ε) lnn. Unless P = NP , this contradicts the known
inapproximability result for SetCover due to Dinur and Steurer [3]. �

This proof also carries over to narrower classes of cost functions, just as the
basic hardness proof in Section 4.2 does, thus:

Corollary 3 For every ε > 0, OptDM is NP-hard to approximate to within
ratio (1 − ε) lnn, even when the design cost function is restricted to weighted
sums (Example 7), or to monotone functions (Example 10).

4.4 Fixed parameter hardness

Another general way to cope with NP-hard problems is the fixed-parameter
tractability (fpt) approach. The intuition of the approach is to try to identify
features, called parameters, of an input instance, other than the problem size,
that govern the hardness of a problem. Specifically, an NP-hard problem is fpt
if there exists an algorithm to solve it in time f(k)nO(1), in which f(·) is some
computable function and k is some parameter of the input instance [6,17]. There
is bad news on this front as well.

Lemma 3. DecDM, restricted to the counter design cost, and parameterized by
the cost of the output plan, is not FPT under commonly held complexity-theoretic
assumptions.5

Proof: Consider the construction in Section 4.1, denoted by Γ . We show
that Γ is an fpt-reduction from SetCover, parameterized by the size of cover
set, to DecDM, parameterized by the cost of output plan. The definition of
fpt-reduction [6] has three conditions:

1. For all x, x is a positive instance of parameterized SetCover if and only if
Γ (x) is an positive instance of parameterized DecDM.

2. The construction Γ is computable by an fpt algorithm.
3. There exists a computable function from the value of parameter k to the value

of parameter k′, such that for any instance x of parameterized SetCover,
the value of parameter k′ in the instance outputted by Γ is less or equal to
the value of parameter k in the instance x.

Lemma 1 and Lemma 2 confirm that the first condition is satisfied. In Section 4.1,
we mentioned that the construction Γ takes polynomial time with respect to the
input size, which is time f(c)nO(1), for some constant-valued function f and some
constant c. Thus, the second condition is satisfied. Finally, according to Lemma 1
and Lemma 2, the value of parameter k is equal to the value of parameter k′.
The identity function is obviously computable, so the third condition is satisfied.
Thus, construction Γ is a fpt-reduction.
5 The particular assumption being that W [2] 6= FPT .
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Then, suppose that DecDM parameterized by the size of counter design cost
of output plan is FPT . We know that FPT is closed under fpt-reductions, that
means, if a parameterized problem Q with parameter k, denoted by (Q, k), is
reducible to a parameterized problem (Q′, k′) and (Q′, k′) ∈ FPT , then (Q, k) ∈
FPT [6]. So, our supposition implies that SetCover parameterized by size
of coverage set is in FPT , which is a contradiction—unless the entire fixed
parameter hierarchy collapses [6]. �

Corollary 4 DecDM, parameterized by the design cost, is not FPT even when
restricted to weighted sum cost functions (Example 7) or to monotone cost
functions (Example 10), under common assumptions.5

5 Design cost minimization in polynomial time

Section 4 presented a variety of hardness results of various kinds, for several
variations of the design cost minimization problem. Now we present a modicum
of good news, in the form of results that show certain versions of the problem
can indeed be solved in polynomial time, or are fixed parameter tractable.

5.1 Binary design and ordered action costs are efficiently solvable

It is useful to identify a class of cost functions which are amenable to a particular
sort of decomposition.

Definition 11. A cost function c is n-partition orderable if there exists a par-
tition of the action set U into mutually disjoint sets U1, U2, . . . , Un which form
an increasing sequence of costs, where c

(⋃
i∈{1,...,m}Ui

)
< c

(⋃
i∈{1,...,m+1}Ui

)
for

1 ≤ m < n, and ∀x ∈ Ui+1, c(Ui) < c(Ui ∪ {x}).

The intuition is that one must be able to split U into ordered level-sets with
respect to costs. These allow easy solution.

Lemma 4. DecDM, restricted to n-partition orderable cost functions, can be
solved in time O(n |U | |V (G)|).

Proof: For a planning problem (G,Vgoal) with an n-partition orderable cost
function c(P ) there are n + 1 possible outcomes. A straightforward procedure
determines which: apply standard backchaining to (G,Vgoal), but restricting con-
sideration only to actions within U1; if a solution is found it has cost c(U1) and
this minimizes the cost. If no plan has been found at this point, backchaining can
be continued, but now permitting actions from U2 as well. A solution found at
this juncture has cost c(U1∪U2), which must minimize the cost. Otherwise, this
procedure is repeated, adding Ui+1 only after the search with Ui fails. If after
Un has been added no solution has been found, then no plan solves (G,Vgoal).
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Since (G,Vgoal) is state-determined, there are no more than O(|U | |V (G)|) edges
that one need examine. �

We now turn to the particular cost functions mentioned in Examples 8 and 9.

Corollary 5 Any plan minimization problem with a binary design cost function
is polynomial solvable.

Proof: A binary design cost function cA′(·) is a 2-partition orderable cost
function with U1 = A′ and U2 = U\A′. �

Corollary 6 Any plan minimization problem with ordered action costs is poly-
nomial solvable.

Proof: An ordered cost function is an |U |-partition orderable cost function
with Ui = {ui}, i ∈ {1, . . . , n}. �

5.2 Counter design cost is fixed parameter tractable

Though counter design cost (the cost of Example 6), is not n-partition orderable,
we need not be inconsolably bleak.

Lemma 5. DecDM, with counter design cost, parameterized by size of the ac-
tion space is in FPT .

Proof: Let (W,Vgoal) be the given planning problem, and let λ = |U |, i.e.,
let it denote the size of action space of the problem. Consider the following
simple algorithm: Enumerate 2U . Then, for each subsets of Ui ∈ 2U , construct a
planning problem with only actions from Ui. Checking whether each of these new
planning problems can be solved or not with c(PUi

) ≤ k, which takes polynomial
time in V (W ) because W is state-determined. Thus, this algorithm is FPT ,
because its running time is 2λnO(1). �

6 Discussion

This paper complements the authors’ previous papers; it is worth discussing
why those papers, some of which also describe the hardness of aspects related
to plans, do not quite capture an appropriate notion of design cost, the subject
of this work.
States: In [21], motivated by memory constraints, we examine the hardness of a
problem termed ‘concise planning’, which minimizes the number of states in a
plan that solves some planning problem. The cardinality of the set of states is
distinct from the total number of actions or, indeed, any function of A(P,W ),
though, minimization turns out to be difficult nevertheless.
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Observations: A paper more obviously connected with design problems is [24],
where we introduce representations and algorithms for examining whether some
specific deterioration of an idealized sensor is destructive to task achievement.
Determining the most aggressive non-destructive modification is hard.

In contrast, the present paper’s focus is actions. While states are proportional to
memory requirements, this is seldom the constraining factor in a robot design.
Choice of sensors is an important design consideration, but the question there
is usually whether they will be too noisy to be effective or not. In contrast, the
mere inclusion of an action in a robot’s repertoire usually demands some change
in actuation. The connection between A(P,W ) and cost of the robot is direct.

The idea of a state-determined form was developed in [24] and [8]. Its impor-
tance, prior to the present paper, had been mainly abstract and conceptual. The
requirement of a state-determined planning problem, directly in the definition
of DecDM, is important for the proof of the completeness result in Theorem 1.
Note, though, that without that requirement, the proof of containment within
NP-hard is preserved.

Future work could examine whether there are meaningful costs for observa-
tions that are “dual” to the design costs for actions. Imagine a design problem
where the robot wishes to never receive some sensor reading: one might think
that a robot should just omit any sensor which may receive such a signal, or that
the robot could just forget the unwanted information. But these options may be
impossible for particular contexts.
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