
Beyond the planning potpourri: reasoning about

label transformations on procrustean graphs

Shervin Ghasemlou1, Fatemeh Zahra Saberifar2,
Jason M. O’Kane1, and Dylan A. Shell3

1 University of South Carolina, Columbia SC, USA,
2 Amirkabir University of Technology, Tehran, Iran,
3 Texas A&M University, College Station TX, USA

Abstract. We address problems underlying the algorithmic question of
automating the co-design of robot hardware in tandem with its appo-
site software. Specifically, we consider the impact that degradations of
a robot’s sensor and actuation suites may have on the ability of that
robot to complete its tasks. Expanding upon prior work that addresses
similar questions in the context of filtering, we introduce a new formal
structure that generalizes and consolidates a variety of well known struc-
tures including many forms of plans, planning problems, and filters, into
a single data structure called a procrustean graph. We describe a col-
lection of operations on procrustean graphs (both semantics-preserving
and semantics-mutating), and show how a family of questions about the
destructiveness of a change to the robot hardware can be answered by ap-
plying these operations. We also highlight the connections between this
new approach and existing threads of research, including combinatorial
filtering, Erdmann’s strategy complexes, and hybrid automata.

1 Introduction

The process of designing effective autonomous robots—spanning the selection of
sensors, actuators, and computational resources along with software to govern
that hardware—is a messy endeavor. There appears to be little hope of fully
automating this process, at least in the short term. There would, however, be
significant value in design tools for roboticists that can manipulate partial or
tentative designs, in interaction with a human co-designer.

To that end, this paper lays a formal foundation for answering questions
about the relationship between a robot’s hardware, specifically its sensors and
actuators, and its ability to complete a given task. Interesting questions arise
when one considers how modifications to a given robot’s capabilities alter the
planning and estimation efforts that robot must undertake. This paper develops
theoretical tools that we believe to be helpful for thinking about such aspects.

This material is based upon work supported by the National Science Foundation
under Grants IIS-1527436, IIS-1526862, IIS-0953503, IIS-1453652.

2

Prior work by the current authors [10] made some preliminary progress in
this direction by considering a limited form of sensor map, which describes a
coarsification of a sensor model. This paper strengthens and extends those results
in several ways.

1. We contribute, in Section 2, a new general representation called a procrustean
graph4 that unifies several previously distinct conceptual classes of object.
This representation is constructive, in that it can be used to instantiate a
data-structure from which various questions can be posed and addressed
concretely. We detail, in Section 3, how this representation can be used to
reason about planning problems and their solutions.

2. We extend, in Section 4, the existing notion of a sensor map to model modifi-
cations to both sensors and actuators, including modifications that introduce
uncertainty directly. This generalized map is called label map. We show how
to decide whether a label map is destructive in the sense of preventing the
achievement of a previously-attainable goal. (Prior results used a much more
restrictive notion of destructiveness, in which a map was considered destruc-
tive if it engendered any change to the robot’s behavior; our new results deem
non-destructive any map under which the robot can still reach its goal, even
if its strategy for doing so is forced to change.)

The dénouement of the paper includes a review of related work interleaved with a
discussion of the outlook for continued progress (Section 5) and some concluding
remarks (Section 6).

2 Procrustean graphs

2.1 Basic definitions

The work in this paper is connected with a variety of design-time concerns that
can be represented with a single formal construct: a graph with set-labelled
transitions.

Definition 1 (p-graph). A procrustean graph (p-graph) is an edge-labelled
bipartite directed graph in which

1. the finite vertex set, of which each member is called a state, can be partitioned
into two disjoint parts, called the action vertices Vu and the observation
vertices Vy, with V = Vu ∪ Vy,

2. each edge e originating at an action vertex is labeled with a set of actions
U(e) and leads to an observation vertex,

3. each edge e originating at an observation vertex is labeled with a set of ob-
servations Y (e) and leads to an action vertex, and

4 Named for Procrustes (Προκρούστες), son of Poseidon, who, according to myth,
took the one-size-fits-all concept to extremes.

3

{00}

{10}

{0} × [50, 100]

[50, 100]× [50, 100]

{01, 11}

[−25, 0]× [−50,−25]

Fig. 1. [left] A differential drive robot with sensors for obstacles, both positive (walls)
and negative (holes). [right] An example p-graph that models behavior in which the
robot follows a wall while avoiding negative obstacles. This graph, and those that
follow, have solid circles to represent elements of Vu, and empty squares for Vy. The
arcs are labelled with sets; those that leave the central vertex have two digits, the first
digit is ‘1’ iff the wall is detected by the IR sensor on the left-hand side; the second
digit is ‘1’ iff the downward pointing IR sensor detects a cliff. The actions, on the edges
leaving squares, represent sets of left and right wheel velocities, respectively.

4. a non-empty set of states V0 are designated as initial states, which may be
either exclusively action states (V0 ⊆ Vu) or exclusively observation states
(V0 ⊆ Vy).

The general intuition is to encode an interaction between an agent or robot
(which selects actions) and its environment (which dictates the observations
made by the robot). The definition is intentionally ecumenical in regard to the
nature of that interaction, because we intend this definition to serve as a starting
point for more specific structures which, once specific context and semantics
are added, lead to special cases that represent particular (and familiar) objects
involved planning, estimation, and the like.

Example 2 (wheels, walls, and wells). A small example p-graph, intended
to illustrate the basic intuition, appears in Figure 1. It models a Roomba-like
robot that uses single-bit wall and cliff sensors to navigate through an envi-
ronment. Action states are shown as unshaded squares; observation states are
shaded circles. Action labels are subsets of [0, 500] × [0, 500], of which each el-
ement specifies velocities for the robot’s left and right drive wheels, expressed
in mm/s. Observations are bit strings of length 2, in which the left bit is the
output of the wall sensor, and the right bit is the output of the cliff sensor. ⋄

Note that, to keep the model amenable to direct algorithmic manipulation,
we require that a p-graph consist of only finitely many states. The labels for
each edge, either U(e) or Y (e), need not be finite sets. We instead rely on the
availability of some simple operations on labels such as unions, intersection, and
membership tests; full details appear in [10].

2.2 Some things you know about are actually secretly p-graphs

Several well-known kinds of objects can be recognizably expressed as p-graphs.

4

{emit1}

{obsb}

{obsb}

{obsb}

{obsc}

{obsc}

{emit0}

{obsb}

{obsa}

{obsc}

{obsa}

{emit0}

{obsc}

{obsa}

{obsa} {emit0}

Fig. 2. The ‘agents to-
gether’ filter devised by
Tovar et al. [12] expressed
as a p-graph. The emit0
action indicates that the
agents are separated by
a beam, and emit1 indi-
cates that the agents are
together.

Example 3 (Combinatorial filters). As formalized by LaValle [7], combi-
natorial filters are discrete expressions of estimation problems. Associated with
each state in such a filter is a specific output. Filters can be cast as p-graphs
by having observations and observation transitions exactly as in the filter, but
with action vertices having only a single out-edge which has U as a singleton set
bearing the output (which we label emitx for various outputs x). Figure 2 shows
a canonical example in which the property of interest is whether two agents in
an annulus-shaped environment with three beam sensors are apart or not. ⋄

Example 4 (Schoppers’s universal plans). For observable domains, a uni-
versal plan [11] describes an appropriate action for each circumstance that a
robot might find itself in. As such, they can be cast as p-graphs in a straightfor-
ward way: The p-graph has a single observation vertex, with one uniquely-labeled
out-edge corresponding to each world state, and one action state for each of the
distinct available actions. ⋄

Example 5 (Erdmann-Mason-Goldberg-Taylor plans). Several classic pa-
pers [5,6,8] find policies for manipulating objects in sensorless (or near sensorless)
conditions. The problems are usually posed in terms of a polygonal description
of a part; while the solutions to such problems are sequences of actions. Such
plans can be expressed as p-graphs in which actions (e.g., a squeeze-grasp or a
tray tilt at a particular orientation) or ranges of acceptable actions are inter-
leaved with a special ε which constitutes the sole element in all Y (e). Figure 3
shows an example of such a plan. Of particular note is the fact that that plan
exhibits an unexpected dimension of nondeterminism: it indicates sets of allow-
able actions, rather than a single predetermined one, at each step. Also of note
is that the graphs of knowledge states generally searched to produce such plans
are p-graphs themselves. ⋄

Example 6 (Nondeterministic graphs). Recent work by Erdmann [3,4] en-
codes planning problems using finite sets of states, along with nondeterministic
actions represented as collections of edges ‘tied’ together into single actions.
One might convert such a graph to a p-graph by replacing each group of action
edges with an observation node, with an outgoing observation edge for each edge
constituting the original action. ⋄

5

������

��
��
��
��

��
��
��
��

�
�
�
�

{ε} {ε} {ε}

{ε} {ε} {ε}

Fig. 3. A plan for orienting an
Allen wrench via tray tilting,
expressed as a p-graph. Action
edges are labeled with sets of az-
imuth angles for the tray. There
is a single dummy observation,
ε. This plan is shown as Fig. 2
in Erdmann and Mason [5].

The intent in these examples is to illustrate that p-graphs form a general class
that unifies, in a relatively natural way, a number of different kinds of objects
that have been studied over a long period of time. The particular constraints
applied in each case impose certain kinds of structure that proved useful in the
original context. Our objective in this paper is to treat p-graphs, in a general
sense, as first-class objects, suitable for manipulation by automated means.

2.3 Properties of p-graphs

At the most general level, we can view a p-graph as an implicit definition of a
language of strings in which actions and observations alternate. The following
definitions make this precise.

Definition 7 (event). An event is an action or an observation.

Definition 8 (transitions to). For a given p-graph G and two states v, w ∈
V (G), an event sequence e1 · · · ek transitions in G from v to w if there exists
a sequence of states v1, . . . , vk+1, such that v1 = v, vk+1 = w, and for each

i = 1, . . . , k, there exists an edge vk
Ek−→ vk+1 for which ek ∈ Ek.

Note that v and w need not be distinct: for every v, the empty sequence tran-
sitions in G from v to v. Longer cycles may result in non-empty sequences of
states that start at some v and return.

Definition 9 (valid). For a given p-graph G and a state v ∈ V (G), an event
sequence e1 · · · ek is valid from v if there exists some w ∈ V (G) for which e1 · · · ek
transitions from v to w.

Observe that the empty sequence is valid from all states in any p-graph.

Definition 10 (execution). An execution on a p-graph G is an event sequence
valid from some start state in V0(G).

The preceding definitions prescribe when a sequence is valid on a p-graph,
placing few restrictions on the sets involved. There are several instances of
‘choices’ recognizable as forms of non-determinism: (i) there may be multiple
elements in V0; (ii) from any v ∈ Vu some u may be an element in sets on mul-
tiple outgoing action edges; (iii) similarly, from any w ∈ Vy some y may qualify
for multiple outgoing observation edges.

6

{y1}

{u1}

{u1}

{y1}

{u1}

{y2}

{y1}

{u1}

{u2}

{y2}

{y1}

{u1}

Fig. 4. [left] A robot wanders around a pentagonal environment; the segment with the
lightning-bolt contains a battery charger. [right] A p-graph model of this world.

Example 11 (Pentagonal world). Figure 4 presents concrete realizations of
several of the preceding definitions in a single scenario. A robot moves in a
pentagonal environment. Information—at least at a certain level of abstraction—
describing the structure of the environment, operation of the robot’s sensors, its
actuators, and their inter-relationships is represented in the p-graph associated
with the scenario. Both filtering and planning can be posed as problems on the
p-graph representation in terms of valid event sequences. ⋄

Thus far, other than the potentially infinite action- and observation-alphabets
and their specific alternating structure, the definitions are close to classic formal
language theory. The set of executions on G are taken to comprise L(G), the
language induced by p-graph G. Also, since V0(G) ⊆ V (G), the language of every
p-graph includes the empty sequence.

2.4 Properties of pairs of p-graphs

In Section 3, we model both planning problems and plans themselves as p-graphs.
The next definitions will be helpful for formalizing the relationships between
those two p-graphs.

Definition 12 (joint-execution). An event sequence e1 · · · ek is a joint-execution
on a pair of p-graphs G and W if it is an execution in both G and W .

These are the executions that make use of labels and transitions in both
p-graphs, and the joint-executions make up the intersection of their respective
languages.

Definition 13 (finite on). A p-graph G is finite on p-graph W if there exists
an integer k that bounds the length of every joint-execution of G and W .

There are two types of p-graph: those that start by producing an action, and
those that start by receiving an observation.

7

Definition 14 (akin). Two p-graphs are akin if both have initial states that
are action states, or have initial states that are observation states.

A stronger notion of the relationship between two p-graphs is safety, which
has no simple analogy to a property on the languages involved.

Definition 15 (safe). P-graph G is safe on p-graph W if G is akin to W and
if, for every joint-execution e1 · · · ek on G and W , the following property holds:
For every state v ∈ V (G) reached by e1 · · · ek in G, and every state w ∈ V (W)
reached by e1 · · · ek in W , from every possible initial state, we have

1. if v is an action state, then for every action u associated with an edge in
G originating at v, there exists an edge e in W originating at w, for which
u ∈ U(e), and

2. if v is an observation state, then for every observation y associated with an
edge in W originating at w, there exists an edge e in G originating at v, for
which y ∈ Y (e).

The intuition is that if P is safe on Q, then P never executes any action that
is not allowed by Q, and is always prepared to respond to any observation that
may arrive if chosen by Q.

2.5 Basic constructions of new p-graphs from old

We have shown that several existing structures can be described by p-graphs but
the question remains as to why they ought to be expressed as such. We give two
examples of constructive operations, applicable to the p-graph structure, which
produce new p-graphs as output.

Definition 16 (union of p-graphs). The union of two p-graphs U and W ,
each akin to the other, denoted by U ⊎W , is the p-graph constructed by including
both sets of vertices, both sets of edges, and with initial states equal to V0(U) ∪
V0(W).

The intuition is to form a graph that allows, via the nondeterministic selection
of the start state, executions that belong to either U or W .

Definition 17 (state-determined). A p-graph P is in a state-determined
presentation if |V0(P)| = 1 and from every action vertex u ∈ Vu, the edges
e1u, e

2
u, . . . , e

ℓ
u originating at u bear disjoint labels: U(eiu)∩U(eju) = ∅, i 6= j, and

from every observation vertex y ∈ Vy, the edges e1y, e
2
y, . . . , e

m
y originating at y

bear disjoint labels: Y (eiy) ∩ Y (ejy) = ∅, i 6= j.

The intuition is that in a p-graph in a state-determined presentation it is
easy to determine whether an event sequence is an execution: one starts at the
unique initial state and always has an unambiguous edge to follow. We note,
however, that the p-graph with a state-determined presentation for some set of
executions need not be unique.

8

Given any p-graph it is possible to construct a new p-graph that has the same
set of executions on it, but which is in a state-determined presentation. We only
sketch the procedure as it is a generalization of the observation-only algorithm
presented in detail in [10]. The basic idea is a forward search that performs a
powerset construction on the input p-graph. We begin by constructing a single
state to represent the “superposition” of all initial states, and push that onto
a empty queue. While the queue has elements, remove a vertex and examine
the edges leaving the set of vertices associated with it in the original input p-
graph. The labels on those edges are refined by constructing a partition of the
set spanned by the union of the labels in a way that the subsequent sets of states
in the input p-graph is clear. Edges are formed with the refined sets connecting
to their target vertices, constructing new ones as necessary, and placing these in
the queue.

3 Plans and planning problems

While a p-graph induces a structured state space, further enrichment is needed
in order to talk meaningfully about plans and planning problems.

Definition 18 (planning problem). A planning problem is a p-graph G equipped
with a goal region Vgoal ⊆ V (G).

The idea is that for a pair that make up the planning problem, the p-graph
describes the setting and form in which decisions must be made, while the Vgoal

characterizes what must be achieved.

Definition 19 (plan). A plan is a p-graph P equipped with a termination re-
gion Vterm ⊆ V (P).

The intuition is that the out-edges of each action state of the plan show one
or more actions that may be taken from that point—if there is more than one
such action, the robot selects one nondeterministically—and the out-edges of
each observation state show how the robot should respond to the observations
received from the environment. If the robot reaches a state in its termination
region, it may decide to terminate there and declare success, or it may decide
to continue on normally. We can now establish the core relationship between
planning problems and plans.

Definition 20 (solves). A plan (P, Pterm) solves the planning problem (W,Vgoal)
if P is finite and safe on W , and every joint-execution e1 · · · ek of P on W either
reaches a vertex in Pterm, or is a prefix of some execution that reaches Pterm and,
moreover, all the e1 · · · ek that reach a vertex v ∈ V (P) with v ∈ Pterm, reach a
vertex w ∈ V (W) with w ∈ Vgoal.

Example 21 (Charging around and in the pentagonal world). We can
construct a planning problem from the p-graph of Figure 4, along with a goal
region consisting of only the fully-charged state reached by action u2. Figure 5

9

Vterm

{y1, y2}

{y1, y2}

{u2}

{u1}

{u1}

{u1}

{y2}

{y1}

Fig. 5. A plan that directs the robot of
Figure 4 to its charging station, along a
hyperkinetic (that is, exhibiting more mo-
tion than is strictly necessary) path.

shows a plan that solves this problem. However, that plan, a cycle of three ac-
tions, is a bit surprising since it will take the robot along three full laps around its
environment before terminating. The existence of such bizarre plans motivates
our consideration of homomorphic plans, which behave rather more sensibly, in
Section 3.1. ⋄

Given a plan (P, Pterm) and a planning problem (W,Vgoal), we can decide
whether (P, Pterm) solves (W,Vgoal) in a relatively straightforward way. First, we
convert both P and W into state-determined presentations, using the technique
described in Section 2.5. Then, the algorithm conducts a forward search using
a queue of ordered pairs (v, w), in which v ∈ V (P) and w ∈ V (W), beginning
from the (unique, due to Definition 17) start states of each. For each state pair
(v, w) reached by the search, we can test each of the properties required by
Definition 20:

– If P and W are not akin, return false.

– If (v, w) has been visited by the search before, then we have detected the
possibility of returning to the same situation multiple times in a single exe-
cution. This indicates that P is not finite on W . Return false.

– If v and w fail the conditions of Definition 15 (that is, if v is missing an
observation that appears in w, or w omits an action that appears in v) then
P is not safe on W . Return false.

– If v is a sink state not in Pterm, or w is a sink state not in Vgoal, then we
have detected an execution that does not achieve the goal. Return false.

– If v ∈ Pterm and w /∈ Vgoal, then the plan might terminate outside the goal
region. Return false.

If none of these conditions hold, then we continue the forward search, adding to
the queue each state pair (v′, w′) reached by a single event from (v, w). Finally, if
the queue is exhausted, then—knowing that no other state pair can be reached by
any execution—we can correctly conclude that (P, Pterm) does solve (W,Vgoal).

It may perhaps be surprising that both planning problems and plans are
defined by giving a p-graph, along with a set of states at which executions should
end. We view this symmetry as a feature—not a bug—in the sense that it clearly
illuminates the duality between the robot and the environment with which it
interacts. Observations can be viewed as merely “actions taken by nature” and
vice versa. At an extreme, the planning problem and the plan may be identical:

10

Lemma 22 (self-solving plans). If P is a p-graph which is acyclic and the
set of its sink nodes is Vsink, then (P, Vsink) is both a planning problem and a
plan. Moreover, (P, Vsink) solves (P, Vsink).

Proof: The plan is obviously finite and safe on itself. As joint-executions are
essentially just executions, the result follows from the fact that every execution
on P either reaches an element of Vsink, or is the prefix of one that does. �

We have described, in Definitions 16–17, operations to construct new p-
graphs out of old ones. We can extend these in natural ways to apply to plans.5

Definition 23 (∪-product of plans). The ∪-product of plans (U, Vgoal) and
(W,V ′

goal), with U and W akin, is a plan (U ⊎W,Vgoal ∪ V ′
goal).

Theorem 24 (state-determined ∪-products). Given two plans (P, Pterm)
and (Q,Qterm), with P and Q akin, construct a new plan whose p-graph, denoted
R, is the expansion of P ⊎ Q into a state-determined presentation. Recall that
the expansion means that every state s ∈ V (R) corresponds to sets Ps ⊆ V (P)
and Qs ⊆ V (Q) of states in the original p-graphs (either possibly empty, but not
both). Define a termination region Rterm as follows:

Rterm := {s ∈ V (R) | (Ps 6= ∅ ∧ Ps\Pterm = ∅) ∨ (Qs 6= ∅ ∧Qs\Qterm = ∅)} .

Then (R,Rterm) is equivalent to (P ⊎ Q,Pterm ∪ Qterm), in the sense that they
have identical sets of executions on them, and moreover that any problem solved
by the former is also solved by the latter.

Proof: The result follows directly from the executions that underly the state-
determined expansion, and the definition of the ∪-product. �

This result illustrates how the state-determined expansion is useful— it per-
mits a construction that captures the desired behavioral properties and, by work-
ing from a standardized presentation, can do this directly by examining states
rather than posing questions quantified over the set of executions.

3.1 Homomorphic solutions

The following are a subclass of all solutions to a planning problem.

Definition 25 (homomorphic solution). For a plan (P, Vterm) that solves
planning problem (W,Vgoal), consider the relation R ⊆ V (P)× V (W), in which
(v, w) ∈ R if and only if there exists a joint execution on P and W that can end
at v in P and in w in W . A plan for which this relation is a function is called
an homomorphic solution.

The name for this class of solutions comes via analogy to the homomor-
phisms —that is, structure-preserving maps— which arise in algebra. In this con-
text, an homomorphic solution is one for which each state in the plan corresponds
to exactly one state in the planning problem.

5 . . . and—via the symmetry between Definitions 18 and 19—in the same stroke, to
planning problems, though in this paper we’ll use these operations only on plans.

11

Vterm

{u1}

{y1}

{u1}

{y2}

{y1}

{u1}

{u2}

{y2}

{y1}

{u1} Fig. 6. An alternative, more direct plan that solves
the problem of navigating Figure 4’s robot to its
charger. This plan is an homomorphic solution.

Example 26. Recall Example 21, which shows a cyclic solution that involves
tracing around the cyclic planning problem multiple times, until the least com-
mon multiple of their cycle lengths is found, in this case a series of 30 states
in each graph. This plan is not an homomorphic solution, because each plan
state corresponds to multiple problem states. However, a simpler plan, depicted
in Figure 6, can be formed in which each plan state maps to only one problem
state. This solution is therefore an homomorphic one. ⋄

The preceding example is a particular instance of a more general pattern.

Theorem 27. If there exists a plan to solve a planning problem, then there
exists an homomorphic solution.

Proof: Suppose (P, Pterm) is a solution to (W,Vgoal). If every joint-execution
arriving at v in P arrives at the same w in W , then (v, w) ∈ R is a function,
so (P, Pterm) is an homomorphic solution. Thus, consider the cases for which
there are elements (v, w) ∈ R and (v, y) ∈ R, with w 6= y. Let Rlast ⊂ R be
the relation where (vp, vw) ∈ Rlast iff there is a joint-execution e1 · · · ek arriving
at vp on P and vw on W , and there are no joint-executions which extend the
execution (e.g., e1 · · · ek · · · em, m > k) that arrive at vw again. Then construct
a new plan (Q,Qterm) with V (Q) = V (W) and V0(Q) = V0(W). For all edges
departing v ∈ P associated with w ∈ Q where (v, w) ∈ Rlast, we collect the label
sets by unioning them to form Ve. Then edges departing w are included in Q by
carrying over edges from W , intersecting Ve with all the labels of edges departing
w, and dropping those for which the result is empty. Finally, an element w is
included in Qterm if there is a v ∈ Pterm with (v, w) ∈ Rlast. Then (Q,Qterm) is
a solution to (W,Vgoal) because, though (P, Pterm) and (Q,Qterm) have different
sets of executions, every execution on P that reaches Pterm is transformed into
another on Q reaching Qterm (and Vgoal). Moreover, this ensures that R is a
bijection, so that (Q,Qterm) is an homomorphic solution to (W,Vgoal). �

4 Label maps and the damage they inflict

Since p-graphs are capable of representing several structures of interest, the next
question is how they might enable a roboticist to evaluate tentative designs and

12

to better understand solution space trade-offs. One class of interesting design-
time questions arises when one considers how modifications to a given robot’s
capabilities alter the planning and estimation efforts that the robot must under-
take.

4.1 Label maps

We express modification of capabilities through maps that mutate the labels
attached to the edges of a p-graph.

Definition 28 (action, observation, and label maps). An action map is a
function hu : U → 2U

′

\{∅} mapping from an action space U to a non-empty set
of actions in a different action space U ′. Likewise, an observation map is a func-
tion hy : Y → 2Y

′

\{∅} mapping from an observation space Y to a non-empty
set of observations in a different observation space Y ′. A label map combines an
action map hu and a sensor map hy:

h(a) =

{

hu(a) if a ∈ U

hy(a) if a ∈ Y
.

Definition 29 (label maps on sets and p-graphs). Given a label map h,
its extension to sets is a function that applies the map to a set of labels:

h(E) =
⋃

e∈E

h(e).

The extension to p-graphs is a function that mutates p-graphs by replacing each
edge label E with h(E). We will write h(P) for application of h to p-graph P .

Example 30 (label maps on intervals). If the action or observation space is
R, then we can implicitly represent some subsets of those events as a finite union
of intervals [10]. To represent a label map on such an event space, we might, for
example, take bounding polynomials p1(x) and p2(x), and define

h(x) = {x′ | p1(x) ≤ x′ ≤ p2(x)}.

Given a finite-union-of-intervals label ℓ ⊂ R, we can evaluate this kind of h
by decomposing h into monotone sections, selecting the minimal and maximal
values of p1 and p2 within that range, and computing the union of the results
across all of the monotone sections. Figure 7 shows an example. ⋄

Label maps allow one to express weakening of capabilities as follows. If mul-
tiple elements in the domain of h(·) map to sets that are not disjoint, this ex-
presses a conflation of two elements that formerly were distinct. When they
are observations, this directly models a sensor undergoing a reduction in fidelity
since the sensor loses the ability to distinguish elements. When they are ac-
tions, this models circumstances where uncertainty increases because a single

13

x1 x3

p2(x3)

x2

p2(x2)

p1(x3)

p2(x1)

p1(x1)
p1(x2)

Fig. 7. A label map from R to 2R may be de-
scribed by functions p1 and p2 as lower and up-
per bounds, respectively. The marked vertical in-
terval, spanning p1(x1) to p2(x2) illustrates the
image of h across the monotone segment from x1

to x2. Values for other monotone segments would
be computed similarly.

action can now potentially produce multiple outcomes, and the precise outcome
is unknown until after its execution.

Further, when the image of element E is a set with multiple constituents, this
also expresses the fact that planning becomes more challenging. For observa-
tions, it means that several observations may result from the same state and, as
observations are non-deterministic, this increases the onus for joint-executions
to maintain safety (for example, plans must account for more choices).

For actions, while there is a seemingly larger choice of actions, this increase
does not represent an increase in control authority because several actions be-
have identically. In both action and observation instances, the map may become
detrimental when the outputs of h(E) intersect for multiple Es and thus ‘bleed’
into each other. Broadly, one would expect that this is more likely when the
output sets from h(·) are larger.

4.2 Destructive or not?

If a label map can express a change in a p-graph, the question is whether this
change matters. One can pose this question meaningfully for planning problems
as the added ingredients provide semantics that yield the notion of solubility.

Definition 31 (destructive and non-destructive). A label map h is de-
structive on a set of solutions S to planning problem (G,Vgoal) if, for every
plan (P, Vterm) ∈ S, (h(P), Vterm) cannot solve (h(G), Vgoal). We say that h is
non-destructive on S if for every plan (P, Vterm) ∈ S, (h(P), Vterm) does solve
(h(G), Vgoal).

Intuitively, destructiveness requires that the label map break all existing
solutions; non-destructiveness requires that the label map break none of them.

Example 32 (single plans). If S = {s} is a singleton set, then we can de-
termine whether h is destructive on S by applying the label map h —recall
Definition 28— to compute h(s) and h(G), and then testing whether h(s) solves
h(G) —recall the algorithm described in Section 3. If h(s) solves h(G), then h
is nondestructive on S; otherwise, h is destructive on S. In this singleton case,
we say simply that h is (non-)destructive on s. ⋄

Definition 31 depends on a selection of some class of solutions. Of particular
interest is the maximal case, in which every solution is part of the class.

14

Definition 33 (strongly destructive and strongly non-destructive). A
label map h is strongly (non-)destructive on a planning problem (G,Vgoal) if it
is (non-)destructive on the set of all solutions to (G,Vgoal).

Note that, while strong destructiveness may be decided by attempting to
generate a plan for h(G) (perhaps by backchaining from Vgoal), strong non-
destructiveness may be quite difficult to verify in general, if only due to the
sheer variety of extant solutions. (Recall Example 21, which solves its problem
in an unexpected way.) The next results, while not sufficient in general to decide
whether a map is strongly non-destructive, do perhaps shed some light on how
that might be accomplished.

Lemma 34 (label maps preserve safety). If P is safe on G, then for any
label map h, h(P) is safe on h(G).

Proof: Consider each pair of states (v, w), with v ∈ V (P) and w ∈ V (G)
reached by some joint-execution on P and G. Suppose for simplicity that v is an
action state. (The opposite case is similar.) Let E1 denote the union of all labels
for edges outgoing from v, and likewise E2 for labels of edges outgoing from w.
Since P is safe on G, we have E1 ⊆ E2. Then, in h(P) and h(G), observe that

h(E1) =
⋃

e∈E1

h(e) ⊆
⋃

e∈E2

h(e) = h(E2),

and conclude that h(P) is safe on h(G). �

Lemma 35 (label maps never introduce homomorphism). If (P, Pterm)
is a non-homomorphic solution to (G,Vgoal) then no label map h results in
(h(P), Pterm) being an homomorphic solution to (h(G), Vgoal).

Proof: Since (P, Pterm) is a non-homomorphic solution to (G,Vgoal), there
exist two joint-executions e1 · · · ek and e′1 · · · e

′

m on P and G such that both arrive
at v ∈ V (P) in P , but on G, the former arrives at w ∈ V (G) and the latter arrives
at w′ ∈ V (G) with w 6= w′. Now, given any h(·), pick any particular sequence
(h1 ∈ h(e1)) · · · (hk ∈ h(ek)), and (h′

1 ∈ h(e′1)) · · · (h
′

m ∈ h(e′m)), making choices
arbitrarily. These are joint-executions on h(P) and h(G). Application of the
label map means there is a way of tracing both (h1 ∈ h(e1)) · · · (hk ∈ h(ek)) and
(h′

1 ∈ h(e′1)) · · · (h
′

m ∈ h(e′m)) on h(P) to arrive at v, while there is a way of
tracing the former on h(G) to arrive at w, and the latter at w′. So (h(P), Pterm)
cannot be an homomorphic solution to (h(G), Vgoal). �

Theorem 36 (extensive destructiveness). For a planning problem (G,Vgoal),
let H denote the set of homomorphic solutions that problem. Then any label map
that is destructive on H is strongly destructive.

Proof: Since h is destructive on H, we know that (h(G), Vgoal) can only
have homomorphic solutions if some formerly non-homomorphic solution can
become an homomorphic one under h, but Lemma 35 precludes that eventuality.
This implies, via Theorem 27, that no plan solves h(G). Therefore h is strongly
destructive on (G,Vgoal). �

The interesting thing here is that Theorem 36 shows that the class of homo-
morphic solutions play a special role in the space of all plans: By examining the
behavior of h on H, we can gain some insight into its behavior on the space of
all plans. Informally, H seems to function as a ‘kernel’ of the space of all plans.

15

5 Related work and outlook

The examples presented early in the paper illustrate how p-graphs allow for a
uniformity in treating multiple existing formal objects; the assortment of con-
structs is surely indicative of the ongoing search for foundational forms.

Combinatorial filters: This paper builds on our prior work [9, 10], which is
strongly influenced by the combinatorial filtering perspective, with its use of
simple, discrete objects that generalize beyond the methods used in traditional
estimation theory, which has a strong reliance on probabilistic models. In both
LaValle [7], which provides a tutorial introduction and overview to the approach,
and the substantial paper on the topic [12], more work is needed to extend the
theory, which only provides for inference, to express aspects of feedback-aware
control for achieving tasks. The present paper makes some progress in extending
the approach to deal with active (rather than merely passive) systems.

Strategy complexes: One formulation that emphasizes action from the out-
set is Erdmann’s more recent work on strategy complexes [3]. He uses tools
from classic and computational topology to relate plans, formulated broadly
to include sources of non-determinism, to high-dimensional objects—his loop-
back complexes—whose homotopy type provides information about whether the
planning problem can be solved. We speculate that preservation of plan exis-
tence under label maps might be productively studied across planning problems
by examining the map’s operation on loopback complexes: classes of maps that
can be shown to preserve the homotopy type of such complexes (perhaps over
restricted classes of planning problems) can be declared non-destructive.

Sensor maps on filters: The maps we have introduced here generalize that
of our prior work [10] in three crucial ways: (1)These definitions consider modi-
fication of actuators and related resources involved in generating actions. (2)By
mapping each element of some label set to another set and then taking the union
on graph edges, one may express the notion of loss of information by having E
grow under the action of h. This idea was expressed as a valuable feature for mu-
tations in [10], but is not correctly achievable with the definitions therein. (3)The
notion of non-destructiveness in that work is stronger than Definition 31, not
only requiring that plan (h(P), Vterm) solve (h(G), Vgoal) but also that it solve it
in the same way as (P, Vterm) solves (G,Vgoal).

Co-design: As we have already argued, the right formalism should aim to
provide the representational basis for objects that can manipulated by algorithms
in order to guide the design process. We mention here, perhaps related mostly by
broader spirit, the recent work of Censi [2] wherein he poses and solves what he
terms co-design problems where, given a network of monotone constraints, the
selection of components is a process that can be automated. Part of the interest
in studying labels maps is that they can model aspects of different components;
forging connections with the co-design approach is interesting.

Hybrid automata: More immediately related, and also adopting an algorith-
mic stance on the design process, are methods based on hybrid automata (HA),
several of which leverage powerful synthesis and verification techniques [1]. De-

16

spite some similarities, including extensive use of non-determinism, the relation-
ship between p-graphs and HA is somewhat involved: guard expressions in a
rich logical specification language have structure missing from the label sets we
study; nor are actions labels intended to model continuous dynamics.

6 Conclusion

We believe that the most crucial intellectual contributions of the present work
are in achieving a degree of abstraction of prior ideas in two ways: (1) We
separate those entities which have been formalized in robotics because they have
some interpretation that is useful (e.g., the idea of a plan, a filter), from their
representation. The p-graph, in and of itself, lacks an obvious interpretation.
Its definition does not include semantics belying a single anticipated use, rather
context and any specific interpretation are only added for the special subclasses.
(2) Even if the p-graph is a unifying representation, it is not a canonical form.
This paper represents an important mental shift in lifting most of the notions
of equivalence up to sets of executions (languages), rather than depending on
operations on some specific graph. The present work continues to separate the
notion of behavior from presentation.

References

1. Belta, C., Bicci, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G.J.: Symbolic
Control and Planning of Robotic Motion. IEEE Transactions on Robotics and
Automation 14(1), 51–70 (Mar 2007)

2. Censi, A.: A Class of Co-Design Problems With Cyclic Constraints and Their
Solution. IEEE Robotics and Automation Letters 2(1), 96–103 (Jan 2017)

3. Erdmann, M.: On the topology of discrete strategies. International Journal of
Robotics Research 29(7), 855–896 (2010)

4. Erdmann, M.: On the topology of discrete planning with uncertainty. in advances
in applied and computational topology. In: Zomorodian, A. (ed.) Proc. Symposia
in Applied Mathematics. vol. 70. American Mathematical Society (2012)

5. Erdmann, M., Mason, M.T.: An Exploration of Sensorless Manipulation. IEEE
Transactions on Robotics and Automation 4(4), 369–379 (Aug 1988)

6. Goldberg, K.Y.: Orienting Polygonal Parts without Sensors. Algorithmica 10(3),
201–225 (1993)

7. LaValle, S.M.: Sensing and Filtering: A Fresh Perspective Based on Preimages and
Information Spaces. Foundations and Trends in Robotics 1(4), 253–372 (Apr 2012)

8. M. T. Mason and K. Y. Goldberg and R. H. Taylor: Planning Sequences of Squeeze-
Grasps to Orient and Grasp Polygonal Objects. In: Seventh CISM-IFToMM Sym-
posium on Theory and Practice of Robots and Manipulators (1988)

9. O’Kane, J.M., Shell, D.: Concise planning and filtering: Hardness and algorithms.
IEEE Transactions on Automation Science and Engineering (2017), to appear.

10. Saberifar, F.Z., Ghasemlou, S., O’Kane, J.M., Shell, D.: Set-labelled filters and
sensor transformations. In: Proc. Robotics: Science and Systems (2016)

11. Schoppers, M.J.: Universal Plans for Reactive Robots in Unpredictable Environ-
ments. In: Proc. International Joint Conference on AI. pp. 1039–1046 (1987)

12. Tovar, B., Cohen, F., Bobadilla, L., Czarnowski, J., LaValle, S.M.: Combinatorial
filters: Sensor beams, obstacles, and possible paths. ACM Transactions on Sensor
Networks 10(3) (2014)

