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Summary. We present a unified treatment for modeling Coulomb and viscous friction within
multi-rigid body simulation using the principle of maximum dissipation. This principle is used
to build two different methods—an event-driven impulse-based method and a time stepping
method—for modeling contact. The same principle is used to effect joint friction in articu-
lated mechanisms. Experiments show that the contact models are able to be solved faster and
more robustly than alternative models. Experiments on the joint friction model show that it
is as accurate as a standard model while permitting much larger simulation step sizes to be
employed.

1 Introduction

Rigid body dynamics is used extensively within robotics in order to simulate robots, learn opti-
mal controls, and develop inverse dynamics controllers. The forward dynamics of rigid bodies
in free space has been well understood for some time, and the recent advent of differential
algebraic equation (DAE) based methods has made the dynamics of bodies in contact straight-
forward to compute as well. However, fast and stable robotic simulation remains somewhat
elusive. The numerical algorithms used to compute contact forces run (on average) in time
O(n3) in the number of contact points and are numerically brittle. In this paper, we present a
class of methods for modeling contact with friction in multi-rigid body simulation that is not
only faster empirically than existing methods, but is solvable with numerical robustness. We
also extend our approach to modeling joint friction and show how it is at least as accurate as
standard joint friction models, while permitting much larger simulation step sizes (and thus
much greater simulation speed).

Our approach centers around the principle of maximal dissipation. Paraphrasing Stewart
(2000), the principle of maximal dissipation states that, for bodies in contact, the friction force
is the one force (of all possible friction forces) that maximizes the rate of energy dissipation. In
this paper, we show that we can use the principle of maximal dissipation to implicitly solve for
frictional forces, in contrast to prior approaches that set the frictional force by explicitly using
the direction of relative motion. By employing this strategy, we are able to dispense with the
complementarity constraints that are nearly universally employed and instead formulate the
contact problem using a convex optimization model.
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2 Methods for modeling contact with friction in multi-rigid body
simulation

2.1 Background

As stated in the previous section, modeling contact with friction in multi-rigid body simu-
lation has been extensively conducted using complementarity constraints. Such constraints,
which take the form a ≥ 0,b ≥ 0,aTb = 0, have been utilized in multi-rigid body simulation
to ensure that forces are not applied at contact points at which bodies are separating (Anitescu
and Potra, 1997), that either sticking or sliding friction is applied (Anitescu and Potra, 1997),
and that forces are applied only for joints at their limits (Miller and Christensen, 2003). A
non-exhaustive survey of the literature dedicated to modeling contact with complementarity
constraints includes Löstedt (1982); Moreau (1983); Löstedt (1984); Moreau (1985, 1988);
Monteiro-Marques (1993); Baraff (1994); Anitescu et al (1997); Pfeiffer and Glocker (1996);
Brogliato (1996); Trinkle et al (1997); Anitescu and Potra (1997); Anitescu et al (1999); Stew-
art and Trinkle (2000); Anitescu and Potra (2002); Anitescu and Hart (2004); Trinkle et al
(2005); Anitescu (2006); Potra et al (2006); Erleben (2007); Anitescu and Tasora (2008);
Petra et al (2009); Todorov (2010); Tassa and Todorov (2010). Initial efforts on modeling
contact with friction (Löstedt, 1982, 1984; Baraff, 1994) attempted to solve a linear com-
plementarity problem (LCP) for the unknown forces and accelerations. Later work—under
which researchers realized that solving for forces and accelerations could be subject to in-
consistent configurations3 (Baraff, 1991)—solved instead for unknown impulsive forces and
velocities; this approach was able to avoid the problem of inconsistent configurations. Both
iterative sequential impulse schemes (e.g., Mirtich (1996b); Guendelman et al (2003)) and
simultaneous impulse-based methods (e.g., Anitescu and Potra (1997); Stewart and Trinkle
(2000)) were employed. The former methods have been viewed as splitting methods (Cottle
et al, 1992) for solving linear complementarity problems by Lacoursière, who reported slow
convergence rates for coupled problems using such approaches (Lacoursière, 2003). Corre-
spondingly, much of the multi rigid-body simulation community currently uses explicit linear
or nonlinear complementarity problem formulations (Anitescu and Potra (1997), most promi-
nently) with impulses and velocities in order to model contact with friction.

Figure 1 illustrates why complementarity conditions are necessary at the acceleration
level; further discussion of their requirement at the acceleration level is present in Baraff
(1994) and Chatterjee (1999). Given that using impulsive forces is necessary to avoid the
problem of inconsistent configurations (exemplified by the problem of Painlevé (1895)), it
must be discerned whether the complementarity conditions are accurate and appropriate in
that new context (i.e., at the velocity level). We stress that the context is indeed new, because
only “resting” (zero relative normal velocity) contacts are treated with forces at the accelera-
tion level4 while both resting and impacting contact are treated with impulses at the velocity
level.

With respect to accuracy, Chatterjee (1999) argues that the complementarity conditions
do not necessarily reflect reality. He conducts an experiment using carbon paper, a coin, and
a hammer, that serves to prove his argument: the physical accuracy of complementarity-based
models, at least in some scenarios, is lacking. Further physical experimentation is warranted,

3 An inconsistent configuration is a contact configuration that has no solution using non-
impulsive forces.

4 Unless a penalty method is used; such methods are irrelevant to this discussion because we
are assuming non-interpenetrating contact.
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Figure 26: Resting contact. This configuration has five contact points; a contact force acts between

pairs of bodies at each contact point.

forces must be strong enough to prevent two bodies in contact from being pushed “towards” one

another. Second, wewant our contact forces to be repulsive; contact forces can push bodies apart, but

can never act like “glue” and hold bodies together. Last, we require that the force at a contact point

become zero if the bodies begin to separate. For example, if a block is resting on a table, some force

may act at each of the contact points to prevent the block from accelerating downwards in response

to the pull of gravity. However, if a very strong wind were to blow the brick upwards, the contact

forces on the brick would have to become zero at the instant that the wind accelerated the brick off

the table.

Let’s deal with the first condition: preventing inter-penetration. For each contact point i, we

construct an expression di(t)which describes the separation distance between the two bodies near the

contact point at time t. Positive distance indicates the bodies have broken contact, and have separated

at the ith contact point, while negative distance indicates inter-penetration. Since the bodies are in

contact at the present time t0, we will have di(t0) = 0 (within numerical tolerances) for each contact

point. Our goal is to make sure that the contact forces maintain di(t) ≥ 0 for each contact point at

future times t > t0.

For vertex/face contacts, we can immediately construct a very simple function fordi(t). If pa(t)

and pb(t) are the contact points of the ith contact, between bodies A and B, than the distance between

the vertex and the face at future times t ≥ t0 is given by

di(t) = n̂i(t) · (pa(t) − pb(t)). (9–1)

At time t, the function d(t) measures the separation between A and B near pa(t). If di(t) is zero,

then the bodies are in contact at the ith contact point. If di(t) > 0, then the bodies have lost contact

at the ith contact point. However, if di(t) < 0, then the bodies have inter-penetrated, which is what

we need to avoid (figure 27). The same function can also be used for edge/edge contacts; since n̂i(t)
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Fig. 1. A figure (taken from Baraff (1997)) illustrating the necessity of complementarity con-
straints for contact at the acceleration level. Complementarity constraints would ensure that
body A does not move upward unnaturally fast if a strong wind were to move between B and
A, accelerating A upward. In the absence of this wind, the complementarity condition keeps
blocks A and B from interpenetrating.

especially given the attention to complementarity constraints at the velocity level in the lit-
erature, but if we accept that nature does not require complementarity constraints, do such
conditions lead to models that are more advantageous in some other way (e.g., computation-
ally?)

Linear and nonlinear complementarity problem-based models are, in fact, inferior with
respect to computation, at least relative to the models introduced in this paper. Solutions to
bisymmetric LCPs—the form that many models take—are NP-hard in the worst case in the
number of contact points (though the expected time solution is O(n3) (Cottle et al, 1992)). The
contact models are non-convex, so only a few algorithms are capable of solving LCP-based
contact models; codes for solving the NCP-based models are even more rare.5 The LCP-based
models linearize the friction cone, and the fidelity of the friction cone approximation increases
the size and, correspondingly, the computational cost of the model to be solved.

Given that complementarity conditions may not be physically warranted and that such
models can be hard to solve computationally, what is the reason behind their strong popularity?
We believe this quote from Chatterjee (1999) is instructive:

It is emphasized that many authors in this area are aware of the possible physical
inaccuracies behind the complementarity assumption. For example, Moreau (1983)
states that a primary benefit of such a formulation is internal mathematical consis-
tency, and empirical corrections towards better accuracy can be accommodated later.
Baraff (personal communication) mentions that there is no reason to think that real
systems obey the complementarity conditions. However, in Pfeiffer and Glocker’s
(1996) discussion of the “corner law of contact dynamics” there is unfortunately no
explicit mention of the possible lack of physical realism behind the complementarity

5 The reader may question the desire to have multiple algorithms capable of solving a contact
model. Optimization algorithms can be numerically brittle, so using multiple algorithms
can reduce the likelihood of a simulation crashing.
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conditions in the presence of impacts. Anitescu and Potra (1997) focus on mathemat-
ical aspects of their formulation, and also omit discussion of physical realism. The
authors of the latter two authoritative works may therefore unintentionally convey an
inaccurate impression to a reader who is new to the field.

2.2 Two representations for the contact models

Given that complementarity conditions are not a necessary feature of contact models, we now
proceed to present our complementarity-free contact models. We will use two representations
for these contact models. Both representations have been employed previously in the litera-
ture. We utilize the two representations here in order to make the community aware of their
existence, to unify them, and, hopefully, to expose them to further study (for determination of
computational or numerical advantages, for example).

A / b representation

The first representation formulates the contact model in terms of matrices A and b (alterna-
tively named K and u by Mirtich (1996b)). This representation has been employed by Baraff
(1994), Mirtich (1996b), Kokkevis (2004), and Drumwright and Shell (2009). In this repre-
sentation, b is a vector of relative velocities in the 3n-dimensional contact space and A is
the 3n× 3n sized contact space inertia matrix that transforms impulsive forces to relative
velocities in contact space. A is dense, symmetric, and positive-semi definite; the latter two
properties were proven by Mirtich (1996b). The matrices A and b are related by the equation:

b+ = Ax+b− (1)

where b− is the vector of relative velocities pre-contact (external forces, such as gravity,
are integrated into this vector), x is the vector of impulses applied in the contact space, and b+

is the vector of relative velocities after impulses are applied.
The matrices A and b can be determined formulaically if the contacting bodies are not

articulated, and via application of test impulses otherwise (cf., Mirtich (1996b); Kokkevis
(2004)). By using test impulses, the contact model can remain ignorant of whether the bodies
are articulated and, if articulated, of whether the bodies are formulated using maximal or
reduced coordinates. This is an advantage of the A / b representation; this representation also
tends to produce simpler—though not necessarily computationally advantageous—objective
and constraint function gradients and Hessians for solving the contact model.

Generalized coordinate representation

The generalized coordinate representation has been used in work by Anitescu and Potra (1997)
and Stewart and Trinkle (2000), among others. This representation uses matrices M (the gen-
eralized inertia matrix), N (the contact normal Jacobian), J (the joint constraint Jacobian);
vectors cn (the contact normal impulse magnitudes), c j (the joint constraint impulse magni-
tudes), q (the generalized coordinates), v (the generalized velocities) and k (the generalized
external forces), and scalar h (the step size).

For models with complementarity constraints, additional matrices are used, both to en-
force the complementarity constraints and to provide a linearized friction cone; we do not list
such matrices here. Because our model does not employ complementarity constraints, it is
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able to provide a true friction cone and still remain computationally tractable. The true fric-
tion cone is obtained using Jacobian matrices corresponding to the two tangential directions at
each contact normal; we denote these matrices S and T and the corresponding contact tangent
impulses as cs and ct .

All of the matrices described above are related using the following formulae:

vt+1 = M−1(NTcn +STcs +TTct +JTc j +hk)+vt (2)

qt+1 = qt +hvt+1 (3)

The second equation reflects that this representation is typically utilized in a semi-implicit
integration scheme.

Note that M is symmetric, positive-definite. M, N, S, T and J are sparse and correspond-
ingly make efficient determination of the objective and constraint gradients and Hessians con-
ceptually more involved than with the A / b representation. Computing M, N, S, T and J is
quite simple, however, and computationally far more efficient than the test impulse method.
We show below, however, that A and b can also be determined efficiently using the matrices
from the generalized coordinate representation.

Unification of the A / b and generalized coordinate representations

The equations below show how b− and A may be obtained using the generalized coordinate
representation.

b− =

N
S
T

(vt +hM−1k) (4)

A =

N
S
T

C
[

NT ST TT
]

(5)

where C , M−1−M−1JT(JM−1JT)−1JM−1.
These equations show that recovering N, S, T, and J from A and b− is not possible.

2.3 The contact models for event-driven and time-stepping simulation

Computer-based rigid body simulation methods have been categorized into three schemes
by Brogliato et al (2002): penalty, event-driven, and time-stepping. Given that penalty meth-
ods necessarily cannot enforce non-interpenetration, we focus instead on event-driven and
time-stepping methods. The former are able to utilize arbitrary integration schemes (time-
stepping methods are frequently restricted to semi-implicit Euler integration) while the latter
aim to be able to avoid (possibly nonexistent) accuracy problems due to continually restarting
the integration process; Brogliato et al (2002) provide greater detail of the rationale behind
development of the time-stepping approaches. We note that Drumwright (2010) has shown
that one purported advantage of time-stepping approaches over event-driven simulations—
avoidance of Zeno points—is nonexistent. Sections 2.4 and 2.5 present both event-driven and
time-stepping methods in order to show that our method is applicable to both. Section 2.4 uses
the A/b representation, while Section 2.5 uses the generalized coordinate representation.
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2.4 Event-driven impulse-based method

Mirtich (1996b) defines the work done by collision impulses using the A/b representation
as 1

2 xT(Ax + 2b−). We can use the principle of maximal dissipation to determine the set of
impulses that maximally dissipate kinetic energy. In particular, we can formulate and solve the
following optimization problem.

Quadratic Program 1

Minimize
1
2

xT(Ax+2b−)

Subject to:[
AN B

]
x+b−N ≥ 0 (Noninterpenetration constraint)

xN ≥ 0 (Compressive force constraint)

1TxN ≤ κ (Friction cone constraint)

µ
2
c x2

Ni
+ µ

2
v (b2

T1 i
+b2

T2 i
)≥ x2

T1 i
+x2

T2 i
∀i ∈ 1 . . .n. (Coulomb/viscous

friction constraint)

where A can be partitioned into n× n block AN , n× 2n block B, and 2n× 2n block AT

(i.e., A =
[

AN B
BT AT

]
) and, similarly, x and b can be partitioned into x =

[
xN xT1 xT2

]T and

b =
[

bN bT1 bT2

]T, respectively. Scalar κ is the sum of the normal impulses that describe
the minimum kinetic energy solution when the tangential impulses are zero; this scalar is
described further in Section 2.6.

2.5 Time stepping method

Equivalent in spirit to the event-driven method is the time-stepping method, which, like that
of Anitescu and Potra (1997), is a semi-implicit scheme and, like that of Stewart and Trinkle
(2000), adds contact constraint stabilization to the dynamics equations.

Quadratic Program 2

Minimize
1
2

vt+1TMvt+1

Subject to:

Nvt+1 ≥ 0 (Noninterpenetration constraint)

Jvt+1 = 0 (Bilateral joint constraint)

cn ≥ 0 (Compressive force constraint)

1Tcn ≤ κ (Friction cone constraint)

µ
2
c c2

ni
+ (Coulomb/viscous

µ
2
v [Si(vt +hM−1k)]2+

µ
2
v [Ti(vt +hM−1k)]2 ≥ c2

si
+ c2

ti ∀i ∈ 1 . . .n.

friction constraint)

where Si and Ti refer to the ith row of S and T, respectively. Unlike the event-driven
method, the time-stepping method includes a constraint for bilateral joints in case the method
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is used with maximal-coordinate formulated articulated bodies; the A/b representation im-
plicitly encodes such constraints into the matrix / vector formulations.

2.6 Solving the models

Both of the contact models introduced in the previous sections are convex and can be solved
in polynomial time in the number of contacts using interior-point methods. Determining the
value κ requires solving the models in an initial, frictionless phase (phase I). Next, a frictional
phase (phase II) is solved. If normal restitution is necessary, a third phase is required as well.6

Fortunately, phase I is a quadratic programming model with box constraints, and can thus be
solved extremely quickly using a gradient projection method (Nocedal and Wright, 2006). The
model for phase I (A/b formulation) is:

Quadratic Program 3

Minimize
1
2

xT
NANxN +xT

Nb−N

Subject to:
xN ≥ 0 (Compressive force constraint)

Given that AN is symmetric and positive semi-definite (follows from symmetry and pos-
itive semi-definiteness of A), this model describes a convex linear complementarity problem
(see Cottle et al (1992), p. 5). As a result, the constraint ANxN +b−N ≥ 0 (which is equivalent
to our non-interpenetration constraint) is automatically satisfied at the optimum. This convex
LCP always has a solution and we prove that this solution does not increase the energy in
the system (see Appendix). As phase II cannot increase the energy in the system our contact
models are energetically consistent.

Phase I has two objectives: determine an energetically consistent, feasible point7 for the
nonlinear Quadratic Program 1 and determine κ . The value κ is determined by calculating the
sum 1TxN , using the result from phase I. Observe that the friction cone inequality constraint
in Quadratic Program 1 restricts the sum of the normal impulses to that determined in phase I;
thus, phase II can reorder, transfer, or remove some normal force, but the friction cone is pre-
vented from becoming enlarged arbitrarily (i.e., the normal forces cannot be increased without
bound to increase the amount of frictional force applicable) in order to decrease the kinetic
energy more rapidly.

We note that, although we use a linear complementarity problem formulation to show that
our contact models are energetically consistent, our contact models do not use complementar-
ity constraints: neither phase I nor phase II of the contact models explicitly include any such
constraint.

6 We omit details of this third phase but refer the reader to Anitescu and Potra (1997), which
describes a Poisson-type restitution model that is applicable to our models also.

7 A feasible point is one which respects all inequality constraints. In the case of our con-
tact model, a feasible point will respect non-interpenetration, compressive normal force,
summed normal force, and Coulomb and viscous friction constraints.
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3 Evaluating the contact models

There does not currently exist a standardized set of benchmark models for evaluating the
performance and accuracy of contact models. In order to evaluate contact models, previous
approaches have used either physical experimentation on a set of benchmark scenarios (e.g.,
Stoianovici and Hurmuzlu (1996)) or pathological computer-based scenarios (e.g., Mirtich
(1996b); Sauer et al (1998); Ceanga and Hurmuzlu (2001)) that are known to exhibit certain
behaviors in the real world.

Like Anitescu and Potra (1997), we do not provide exhaustive experimentation to indicate
the predictive abilities of our contact model. Instead, we note that our model possesses the
following properties, which are also possessed by leading alternative contact models that treat
multiple contact points simultaneously (e.g., (Anitescu and Potra, 1997; Stewart and Trinkle,
2000)):

1. Energy is not added to the system.
2. Interpenetration constraints are not violated.
3. Only compressive normal forces are applied.
4. The friction cone is not enlarged artificially.
5. The principle of maximal dissipation is obeyed.

Given that these are the main characterizations of both systems, we can expect the emer-
gent behavior of both the complementarity-based methods and our non-complementarity-
based methods to be similar. Indeed, as Figure 2 shows, the method of Anitescu and Potra
(solved using Lemke’s algorithm (Lemke, 1965; Cottle et al, 1992)) produces identical results
(to numerical precision) to our non-complementarity-based model on at least one scenario.

Fig. 2. Plot illustrating accuracy of a box sliding down a ramp under both the method of
Anitescu and Potra (1997) and the convex optimization-based method introduced in this paper.
Although the two models are formulated quite differently, the simulated results are identical.

We believe that our method is no more accurate than that of Anitescu and Potra or Stewart
and Trinkle (notwithstanding the linearized friction cones generally employed by those two
methods). The advantage of our method lies in the computational domain. Lacking comple-
mentarity constraints, our model runs faster than competing methods; additionally, the gradi-
ent projection method used to solve the first phase of our algorithm—recall that the first phase
of our algorithm finds a point that respects properties (1)–(4) above—never fails to produce
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a solution; failure in phase II of our method will only affect the accuracy of the solution and
will not “break” the simulation.

The experiments below showcase these advantages of our method.

4 Experiments

4.1 Event-driven example: internal combustion engine

We constructed an inline, four cylinder internal combustion engine in order to illustrate the
ability of our method to treat moderate numbers of contacts (between one and two hundred)
far faster than complementarity-based models. All joints within the simulated engine were
realized by contact constraints only. The engine was simulated by applying a torque to the
crankshaft, which caused the cylinders to move upward and downward within the crankcase.
The crankcase and crankshaft guides are stationary within the simulation—they possess infi-
nite inertia, so they do not move dynamically—and the remaining parts are all of mass 1.0kg.
Although the masses do not reflect reality, the moment-of-inertia matrix for each part is calcu-
lated using its triangle mesh geometry via the method of Mirtich (1996a). Gravity acts along
the vertical direction of the simulation at 9.8m/s2 and the engine surfaces are given zero
coefficients of Coulomb and viscous friction: we initially wanted to judge how rapidly the
polygonal-based geometric representation causes energy loss.

For purposes of comparison, we used the method of Anitescu and Potra (1997), modified
to function as an event-driven method, with the simplest (i.e., pyramidal) friction model. Using
the pyramidal friction model resulted in six LCP variables per contact; thus, LCPs of order
between 600 and 1200 were generated.

Fig. 3. Frames in sequence from a simulation of the rigid-body dynamics and interactions
within an internal combustion engine
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Fig. 4. Computation timings required to solve the contact model for a single cylinder of the
internal combustion engine using both the method of Anitescu and Potra (1997) (implemented
as an event-driven method) and the event-driven method introduced in this paper. Timings
for the Anitescu-Potra method are only provided to 0.0025 seconds of simulation time; the
Lemke-based solver (Fackler and Miranda, N/A) could not solve the LCP problem to sufficient
tolerances to continue the simulation past that point. The PATH solver (Ferris and Munson,
2000) was able to complete only a single iteration of the simulation, and is thus not included
in the comparison.

4.2 Time-stepping example: granular matter

We simulated 1001 spheres of radius 0.04m dropping into and settling within a box to illustrate
the feasibility of our method on large scale simulations. We note that similar simulations have
been conducted at even larger scales by Tasora and Anitescu ((in submission); however, that
work is less general and exhibits several features (e.g., permits interpenetration, non-Coulomb
friction model) that limit its applicability outside of granular matter simulation. Figures 6
and 7 show several snapshots taken from the simulation and depict the rapid evolution of the
system.

As Figure 5 indicates, we tested our time-stepping method against a time stepping im-
plementation of the contact model of Anitescu and Potra (1997); we used two different LCP
solvers (LEMKE (Fackler and Miranda, N/A) and PATH (Ferris and Munson, 2000)) though
both exhibited issues with robustness. As in the previous experiment, the pyramidal friction
model was used to effect minimum computation time.

5 Modeling joint friction for articulated bodies formulated in
reduced coordinates

Many robotics applications simulate articulated bodies in reduced coordinates (Shabana,
2001) for several reasons. The reduced coordinate representation is more amenable to produc-
ing matrices useful to roboticists (e.g., the joint space inertia matrix, the end-effector Jacobian
matrix, etc.) and does not require tweaking parameters to minimize joint constraint violations.
The reduced coordinate formulation admits generally simple formulae for modeling Coulomb
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Fig. 5. Kinetic energy of the granular simulation over approximately five seconds of simulation
time. The lack of robustness in the linear complementarity problem solvers is evident here, as
neither solver for the Anitescu-Potra model was able to simulate to one second of simulation
time.

Fig. 6. Frames from time t = 1.95s, t = 1.96s, and t = 1.97s show the granules dropping into
the box.

Fig. 7. Frames from time t = 3.50s, and t = 3.55s depict the granules settling within the box.

and viscous friction at robot joints. From Sciavicco and Siciliano (2000), p. 141, the torques
at joints due to joint friction can be modeled as:

τµ = µv q̇+ µc sgn(q̇) (6)

where µv and µc are the coefficients for viscous and Coulomb friction, respectively.
The issue with this model is that it tends to make the differential equations stiff (i.e., dif-

ficult to solve numerically) using even moderately large values of µc and µv; this statement
is particularly true for µc, which uses the discontinuous signum function. The practical effect
of this issue is that either extremely small integration steps must be taken or the joint fric-
tion must be poorly modeled. We can, however, use the principle of maximum dissipation and
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velocity-level dynamics equations to model friction properly; Section 5.3 will show that our
approach models the viscous component of Equation 6 exactly (for sufficiently small coeffi-
cients of friction or step sizes of the latter), and that the Coulomb component of Equation 6
asymptotically approaches our model as the integration step tends to zero.

5.1 Maximum dissipation-based joint friction model

Under the principle of maximum dissipation, we wish to find the impulses that minimize the
new kinetic energy. The change in joint velocity is given by the formula ∆ q̇ = H−1x, where
q̇ is the joint-space velocity, H is the joint-space inertia matrix, and x is the vector of applied
impulses. Thus we wish to minimize the quantity 1

2 (q̇+∆ q̇)TH(q̇+∆ q̇) subject to Coulomb
and viscous constraints on the applied impulses x.

Quadratic Program 4

Minimize
1
2

xTH−1x+xTq̇

Subject to: −µc1−µvq̇≤ x≤ µc1+ µvq̇ (Joint friction model)

5.2 Solving the joint friction model

The joint friction model provided above is a quadratic program with box constraints. Due to
the symmetry and positive semi-definiteness of H (see Featherstone (1987)), the quadratic
program is convex, and thus a global minimum can be found in polynomial time. In fact,
programs with hundreds of variables—well within the range of the joint spaces of all robots
produced to date—can be solved within microseconds using a gradient projection method
Nocedal and Wright (2006).

5.3 Empirical results

Figures 8 and 9 depict the efficacy of using the quadratic program defined above for effecting
joint friction. We simulated an anthropomorphic, eight degree-of-freedom (DOF) manipulator
arm acting only under the influence of gravity from an initial position. In Figure 8, coefficients
of joint friction of µc = 5.0 and µv = 0.0 were used, while the coefficients of joint friction
were µc = 0.25 and µv = 0.1 in Figure 9. Two methods were used to model joint friction: the
acceleration level method described in Sciavicco and Siciliano (2000) (i.e., Equation 6) and
the quadratic programming method based on the principle of maximal dissipation described
above.

Although Figures 8 and 9 depict only a single DOF of the robot arm (the bicep), the re-
sults in the plots are indicative of all the DOFs for the robot: the acceleration level method
converges to the maximal dissipation-based method as the step size for the former becomes
sufficiently small. Indeed, the top plots in the two figures (i.e., the joint velocities) indicate the
result for the acceleration level method when the step size is not sufficiently small: the simu-
lation becomes unstable. Our results indicate that the quadratic programming model based on
the principle of maximal dissipation is as accurate as an accepted model of joint friction but
that the former admits simulation step sizes several orders of magnitude higher (and, corre-
spondingly, simulation several orders of magnitude faster).
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Fig. 8. Plots show that joint friction is comparable between the maximal-dissipation-based
and acceleration level methods; the former method produces this behavior at a step size three
orders of magnitude larger than the latter. Note that the correct behavior is for the joint position
and velocity to remain at zero, given that the coefficient of Coulomb friction is so large (5.0).

6 Conclusions

Roboticists are very familiar with complementarity-based contact models like that of Anitescu
and Potra (1997); such models have been incorporated into popular simulators like ODE
(Smith, N/A). Consequently, the perception of the accuracy (and inaccuracy) of such mod-
els has been informed by considerable practice. The complementarity-free models that were
introduced in this paper do not possess such a track record, and direct, empirical comparison
between such models is the subject of future work. Nevertheless, the principle of maximal dis-
sipation is accepted by the applied mechanics community, and we have shown evidence that—
at minimum—this principle can be used to simulate plausibly mechanisms, granular matter,
and joint friction. If the accuracy of the complementarity-free models proves acceptable, the
computational advantages intrinsic to our models will yield considerable speedups in robotic
simulation. Finally, we argue that, even if the models presented in this paper are found to be
poorly predictive (compared to complementarity-based models), Chatterjee’s work makes it
clear that non-complementarity-based contact models should be investigated further.
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A Proof that feasible point determined via LCP is energetically
consistent

We now prove that the solution determined in phase I in Section 2.6 is energetically consistent.
Working from Mirtich (1996b), the equation for work done by collision impulses is:

1
2

zT(Az+2b) (7)

Given that z ,

[
y
0

]
, we will prove that:
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1
2

yT(ANy+2bN)≤ 0 (8)

The proof relies upon the linear complementarity solver finding the solution y, which
yields yT(ANy+bN) = 0.

Equation 8 simplifies to:

yT(ANy+2bN)≤ 0 (9)

or, equivalently:

yT(ANy+bN)+yTbN ≤ 0 (10)

Given the linear complementarity condition yT(ANy+bN) = 0, we are left with:

yTbN ≤ 0 (11)

The above equation must hold, because (again, due to the linear complementarity condi-
tion):

yT(ANy+bN) = 0 (12)

and because AN is symmetric, positive semi-definite, which implies that yTANy≥ 0 (and
therefore, that yTbN ≤ 0).


