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Abstract — A task-executing robot may encounter various types
of uncertainty born of sensing, actuation, and motion errors. A robot
uncertain of its current state is likely to reflect this uncertainty in
the calculation of its utilities or performance estimates (e.g., costs,
fitnesses) for planning purposes too. While controlling a single robot
under uncertainty is challenging, coordinating a group of robots
is likely to exacerbate the problem. An efficient and reliable way
for assessing the uncertainty in the system in light of how it will
affect robot’s decisions and subsequent actions can help address
the challenge of distributed reasoning under uncertainty. This paper
examines our previously developed Interval Hungarian algorithm,
providing complementary interpretations from the perspective of
robotics applications. The method is described step by step via a
common scenario: multi-robot navigation with localization uncer-
tainty. Which we provide an extended comparison and analysis of
this algorithm, as well as insights that we gained from experience
conducting physical robots experiments.
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I. INTRODUCTION

Several new robotics research problems of importance have
been produced by reexamining problems which have been ex-
tensively studied and successfully addressed under ideal con-
ditions, and introducing variants under less benign conditions.
Relaxation of information assumptions is one good example of
this: problems arising from noise and estimation uncertainty
are quintessential examples of this type of progress in the last
decade. Indeed, in the real world, sources for uncertainty are
everywhere, assumptions of perfect information are frequently
violated. A typical mobile robot, for example, has information
collected from sensors and motion realized from actuators can
be noisy or even inaccurate; the inferred state of a robot must
have some uncertainty due to limits in its knowledge (e.g.,
Monte Carlo localization in an indoor environment represents
this via a distribution over poses [1]). In these circumstances,
a risk-averse strategy when selecting actions should reduce the
chances of catastrophic failures.

The problem is likely to become more complex for a multi-
robot system when multiple robots suffer from uncertainty at
the same time, and a joint plan (or action) is required. Classic
task allocation methods coordinate a multi-robot system by
optimizing the overall performance with given metrics, but
without considering uncertainties [2], [3]. If uncertainty exists,
a common strategy is to compute the mean or median estimates
which are then fed into the optimal assignment solvers. Such
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Fig. 1. (a) Utility matrix in a performance maximization problem; (b) Cor-
responding assignment matrix; (c) The conceptual form in which utilities are
distributions instead of fixed values.

estimates may fail to work properly. For example, a robot
localizing itself may determine that it is positioned at an
emergency exit of the building. If in the map there are
two exits, one at the front and the other at the rear of the
building, then an estimate such as the mean will position the
robot somewhere potentially quite far the exits. Estimates of
this sort, thus, can be meaningless when particular situations
require estimates of traversal costs.

We suggest that appropriately and efficiently dealing with
task allocation under uncertainty, the details of uncertainty
need must be considered in within the algorithm that assigns
tasks to robots. This means that information regarding the
uncertainty should not be reduced to a single value, or a
point, but instead one should considered the distributional
information which best reflects and describes the nature of
the uncertainty. Recently, we proposed an algorithm called
the Interval Hungarian algorithm [4] to consider multi-robot
task allocation subject to perturbations in the input data. This
treatment of uncertainty adopts a point of view that differs
from popular approaches. (Of which, reviews are provided in
a latter section.) Experiments in both simulation and physical
robots were also conducted to validate the proposed algo-
rithm [5]. This paper does not repeat the algorithm, but instead,
the method is reasoned in detail from a set of multi-robot
localization scenarios, aiming to reveal the essence of why
and especially how we designed this method. Also, we outline
experience that we gained in applying this method to physical
mobile robots, as well as discussions for dealing with some
possible issues arising. We believe that this information is
valuable more generally in designing risk-averse assignment
algorithms and addressing practical task allocation problems.
This article complements our preceding descriptions of the
Interval Hungarian algorithm, by starting from a robotic ap-
plication, visualizing uncertainty spatially, and examining how
the algorithm allows one to address the resulting challenge.

Unlike existing approaches, the interval Hungarian algo-
rithm is a combinatorial method which addresses a simplified



problem in order to avoid the curses of history and dimension:
(1.) the algorithm is strongly polynomial — for any immediate
query the algorithm requires O(n4) time complexity for a team
of n robots; (2.) it does not require planning tree structures
such as a policy tree or a scenario tree, therefore avoids the
curse of dimension.

II. RELATED WORK

Current multi-robot task allocation methods remain inade-
quate when considering their performance under uncertainty.
Generally, the methods that have garnered significant attention
can be classified into two big categories: the (partially observ-
able) Markov decision [6], [7], [8] based approaches, and the
stochastic programming methods [9], [10]. It is worthwhile to
draw a distinction between multi-robot coordination strategies
that employ static notions of expected utility and those that
model the task performance itself in greater detail. The latter
schemes use a rich model of agents and tasks in order
to construct a probabilistic model. For example, stochastic
games/decentralized Markov decision problems (MDPs) [6],
factored MDPs [11], and partially observable Markov decision
problems (POMDPs) [7] permit one to explicitly address the
question of when to perform particular actions (movement,
sensing, communication) so as to reduce uncertainty if doing
will be beneficial for the performance of tasks.

However, these problems do not admit polynomial-time
solutions, and often factorization or independence assumptions
are introduced in order to make the problem tractable. Further
constraints may arise from a distributed solution (e.g., game
theoretic models which design individual pay-off matrices
so that locally greedy agents maximize global pay-off) and
require approximation (e.g., potential games, or a similar
treatment) or task-structure assumptions. In essence, both
POMDP and stochastic programming methods plan ahead for
a number of stages, with computational resources increasing
exponentially.

III. TASK ALLOCATION UNDER UNCERTAINTY

Task allocation can play an important role in coordinating
a multi-robot system. It involves the problem of deciding
which robots should do which tasks at specific times so that
the team’s performance will be optimized. The taxonomy
of Gerkey and Matarić [2] describes how multi-robot task
allocation systems may be classified. In our work, we are most
interested in the category of problems consisting of single-
task robots, single-robot tasks, for an instantaneous assignment
(ST-SR-IA), which means each robot is assigned with exactly
one unique task, and a solution is computed with immediate
information and then executed instantly.

The input data for the allocation problem are called utilities.
A utility is a value that quantifies the suitability (such as
benefit, cost, fitness, etc.) of a robot-task pair. Therefore, for a
system of m robots and n tasks, a total of m× n utilities are
required. These utilities can be represented by a matrix with m
rows and n columns. The matrix is termed a utility matrix. To
describe the assignment solution, an assignment matrix with
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Fig. 2. Uncertainty is demonstrated with Monte Carlo indoor localization†.
Two robots localized themselves with uncertain locations in the corridors of a
building. (a) Example of uncertainty insensitivity; (b) Example of uncertainty
sensitivity.

size of m× n can be constructed: let the entries be 1s if the
corresponding robot-task pairs are assigned and fill all other
entries with 0s. Fig. 1(a) and 1(b) show a utility matrix and
the corresponding assignment matrix, from which we can see
that a valid assignment solution contains at most one assigned
entry in any row or column of the assignment matrix.

However, when uncertainty is introduced, the utilities be-
tween robot-task pairs are no longer fixed values. In a typical
representation, each utility becomes a set of probabilistic
values following a certain distribution. Fig. 1(c) shows an
example with each utility being replaced with a Gaussian
function. For any utility matrix containing uncertain utilities
(maybe not all), we need to either make an instantaneous task
allocation decision so that robots can start to execute the tasks,
or let robots perform immediate actions hopefully improving
their state estimate so as to be less uncertain. More specifically,
two situations are possible: in some cases, solutions are insen-
sitive to uncertainty—despite the variety of possible utilities,
the solutions to these various possibilities produce the same
allocation and, thus, uncertainty can be safely ignored; in other
cases, solutions are sensitive to the uncertainty—even slight
changes in the utilities associated with a robot-task pair may
produce distinct allocations, indicating that it may be better for
the robots to take actions to gather information and reduce the
level of uncertainty. Fig. 2 utilizes a Monte Carlo localization
example to show how uncertainty can affect a task allocation
problem. Assume there are only two robots, R1 and R2, and
we need to dispatch the two robots to the nearest emergency
sites (located at the bottom-left and top-right corners) based
on their localization results. Now each robot determines that
it is located in one of two possible spots: R1 estimates that
it can be located in either region R11 or region R12, whereas
R2 has two possible positions: R21 or R22. (Since the particle

†The map is from player/stage source code package [12], and the localiza-
tion particles are drawn manually for purposes of illustration.



clouds in the corridors of Fig. 2(a) are compact we are treating
them as single locations.)

A close examination reveals that robot R1 should only be
assigned to task site T1 in the bottom-left corner since both
possible localized positions are closer than those of R2. And
analysis for robot R2 is similar. Therefore, the localization
uncertainty in this case can be safely ignored, and a decision
can be simply made to drive R1 left towards T1, and R2

right towards to T2. While the robots are moving, localization
uncertainty can also be expected to be reduced.

Unlike Fig. 2(a), however, situations like the one depicted
in Fig. 2(b) are more complex. Different poses of R1 can
produce different allocations. In these cases, a strategy has to
be designed to reduce the chance of mis-allocations, which
waste both time and energy.

A natural question arises: is there a boundary which
switches from one case to the other? Taking Fig. 2(a) as an
example, if everything is unchanged except that robot R1’s one
possible location R11 appears in a new place, R13, closer to
task site T2, as illustrated in Fig. 3(a), then it is no longer
safe to uniformly assign R1 to T1 and R2 to T2. This is
because if R1’s true position is at R13 depicted in Fig. 3(a)
and R2’s true position is at R22, then the previous assignment
conclusion does not hold. Actually, if all other localization
information is unchanged, it is always safe to allocate R1 to
T1 as long as R11 appears in the part of the corridor colored in
light green (see Fig. 3(b)); otherwise, the assignment solution
depends on particular conditions and needs to be considered
separately. This concrete examples shows that, indeed, there
is a “boundary” between the regions in which the allocation
of sensitive and regions which are insensitive to uncertainty.

IV. SOLUTION OVERVIEW: A STRONG POLYNOMIAL
SENSITIVITY ANALYSIS TECHNIQUE

The boundary mentioned in Section III is important since
it splits the assignment problem into two regimes of behavior
and it that can ease the uncertainty analysis. We need to find
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Fig. 3. (a) An example of violation of insensitivity to uncertainty; (b) Insen-
sitivity regions (light green color) of R11 that produce the same assignment
solution.

Fig. 4. An interval matrix that corresponds to utility matrix in Fig. 1(a).

such a boundary to assess whether it is sufficient to ignore
underlying uncertainty.

From Fig. 3(b), if a robot is located in the uncertainty-
insensitive regions which always result in it being allocated
to emergency site T1 (light green corridors), this means that
the distance to site T1 is within range [0, du] (or (−∞, du]
in a general case), where the upper bound du is the largest
allowable distance. Similarly, if a robot is located in the
uncertainty-insensitive regions but should never be allocated
to emergency site T2, then the cost/distance to site T2 should
be in the range [dl,+∞), where dl is the lower bound on
the distance. Consequently, we may obtain a matrix called an
interval matrix in which each entry is replaced with an interval.
Fig. 4 shows an interval matrix, in a utility maximization
problem.

The interval for each matrix entry describes the permis-
sible perturbation which ensures that the current assignment
solution does not violate (values inside the same interval will
produce the same solution, assuming other entries are known
and fixed). This is the technique of sensitivity analysis and
can be used to check if the solution of a deterministic linear
program is reliable even if some of the parameters are not fully
known, but are instead replaced by some estimates [10], [9].
However, popular sensitivity analysis methods generally are
expensive to compute; in some instances their worst-cases are
intractable for moderate sized problems, although on average
they can be efficient.

The assignment problem can be formulated as an integer
linear program. This classic problem has been solved by
many strong polynomial algorithms, of which the Hungarian
method [13] is probably the most famous. This algorithm uses
only O(n3) time complexity to find the optimal solution for
an n× n utility matrix.

Extending the Hungarian Method, we designed an algorithm
called the Interval Hungarian Algorithm to compute both
the optimal assignment and the associated interval matrix.
The algorithm is also extremely efficient with a worst time
complexity of O(n4) to compute all intervals for all entries.
We do not repeat this algorithm in this paper due to space
limitations, but summarize the idea as follows: the Interval
Hungarian Algorithm purposely hides and exposes certain
edges on the bipartite graph, which is the main data structure
used in the Hungarian Method, and obtains the perturbation
tolerances (intervals) by relaxing the searching conditions
during the Hungarian Procedure. (See [5] for details.)

Having understood the essence of this method, we can
extrapolate the simplified localization problem to more general
scenarios; the added complexity is needed to get closer to real
world problems of interest. In the examples of Figures 2 and 3,
we assumed that each robot has only two uncertain locations,



(a) (b)
Fig. 5. Dark area represents uncertainty-insensitive regions. (a) The robot
is located in the uncertainty-insensitive areas with high probability; (b) The
robot is more likely positioned in the uncertainty-sensitive regions.

so that it is easy to determine whether an uncertain location
falls into the uncertainty-(in)sensitive regions, or equivalently,
whether an uncertain utility falls into the corresponding inter-
vals. However, in practice, the estimated poses of a localization
program may be subject to some continuous probabilistic
distributions. In these sorts of cases, it is inappropriate to
determine whether all possible uncertain utilities fall into
their corresponding intervals or not. To address this issue, a
reliability score P is defined to quantify the probability that
an uncertain estimated utility belongs to a specific interval.
If P is greater than some predefined threshold T , one can
assume it has a sufficiently large chance of falling into the
interval. Figures 5(a) and 5(b) depict the idea of measuring the
reliability scores for uncertainty-insensitive and uncertainty-
sensitive cases, respectively.

The computation of an interval assumes other matrix entries
are fixed values and are not uncertain. This assumption is
too strong for practical problems. One characteristic of the
utility matrix particular to multi-robot task allocation problems
is that all utilities associated with the same robot-task pair
can be correlated if they involve inference over the same
underlying state variables. More formally, a row of a utility
matrix represents all relevant expected utilities for a specific
robot, and the utility estimates of all tasks basically utilize
the same function with the same state variable, although with
different input data. For instance, a robot with special low
resolution sensors will obtain more noisy sensing data and thus
always generate more uncertain utility estimates for whatever
tasks. We use the term interrelated utilities to describe all
directly related utilities in a single row or column. Fortunately,
a robot-task pair has only two assignment states: assigned or
unassigned (reflecting from the assignment matrix, there is
only one 1 and all others are 0s in a row/column). Intervals of
assigned and unassigned entries have finite lower bounds and
upper bounds, respectively. (See Fig. 4 for an example.) To
obtain non-conflicting intervals for all interrelated utilities of
the same robot, one can opt to reduce the interval sie for both
types of entries. Detailed description of method is described
in [5].

The preceding discussion described the question of uncer-
tainty and the interrelated utilities for a single robot. How
about the uncertainty in the overall multi-robot system? During
the execution of tasks, at a certain moment some robots may
have little (or even no) uncertainty, whereas some others might
suffer a great degree of uncertainty. To tackle this problem, we
proposed two solutions: one solution is to simply compute the
reliability score for each uncertainty robot and treat the whole

system as uncertainty-insensitive only if all scores are greater
than the predefined threshold T ; the other solution is more
conservative, and involves raising the threshold if a larger
number of robots are simultaneously subject to uncertainty.
This is because the overall uncertainty increases as more
uncertainty robots are involved, and hence a higher reliability
threshold aims to “compensate” for the increased uncertainty
in the system.

V. VALIDATION VIA PHYSICAL ROBOTS

We have conducted experiments to validate the proposed
method with physical robots, and the results have shown great
success in reducing task mis-allocations caused by uncertainty.
The uncertain utilities in our experiments are from robots’ lo-
calization errors, which are similar to the localization scenarios
described in Section III.

The physical robots that we used are iRobot create robots. A
Hokuyo URG-04LX-UG01 laser range sensor is mounted on
each robot to record range data up to ∼5m, and an ASUS EEE
netbook is carried by each robot to compute all data including
the communication, utility estimation, interval analysis, etc.
See Fig. 6(a).

We consider the problem of dispatching a group of homo-
geneous robots to a set of emergency locations. Each robot
attempts to localize itself in the environment by employing
a particle filter-based approach [1] with a given map of our
research building. Particles exist only in the obstacle-free
area and represent robots’ pose hypotheses. The localization
system plans global paths using a wavefront planner, and
plans the local paths via the VFH+ (Vector Field Histogram)
planner [14]; implementations of both were obtained via
player [12]. The planners return a series of way-points which
connect the current pose to the goal pose, and a robot follows
these waypoints to reach the assigned emergency task location.
The path cost from a pose hypothesis is computed by summing
up all the path-segments connecting corresponding way-points.

Fig. 6(b) shows the particles for an uncertainty-robot. A
path cost distribution illustrated in Fig. 6(c) shows the effect
of the uncertainty on a robots utility estimates, obtained by
computing path lengths from all available hypotheses of an
uncertainty-robot to a specific task location. We can see that
the discrete histograms generally have the shape of Gaussian
distributions.

The system is organized in a centralized structure in order
to assess the uncertainty for the whole system and broadcast
task allocation solutions or appropriate action decisions in the
simplest and quickest way. A server (or an arbitrary robot) is
used for the central computation, and it communicates with the
member robots through the UDP protocol. Fig. 6(d) shows the
particles produced from three uncertainty-robots (in different
colors).

We compared the success ratio between the experiments
using our method and the control experiments without any
uncertainty processing. The results are shown in Table I, in
which the first column represents the number of uncertainty-
robots in the system. The reliability threshold T was slightly
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Fig. 6. (a) The physical robot used for experiments; (b) The particles of uncertain poses are generated throughout the corridors of our research building;
(c) An example of cost distribution; (d) Particles generated from multiple uncertainty-robots.

TABLE I
TASK ACCOMPLISHMENT QUALITY COMPARISON

#Uncertainty
robots Method Successes Mis-

allocation
Other

failures

One
HA 50% 35% 15%
IHA 70% 10% 20%

Two
HA 35% 45% 20%
IHA 75% 10% 15%

Three
HA 20% 60% 20%
IHA 60 % 20% 20%

HA and IHA denote the Hungarian algorithm and interval Hungarian
algorithm, respectively. Each row of data is generated from 20 sets of

experiments. T = 70%, number of particles is 104.

Fig. 7. Assignment flips during task executions. x-axis denotes the number
of uncertainty robots in the system.

raised as more uncertainty-robots were involved, and in Table I
we can clearly see that the margins of success (quantified as
ratios between the proposed method and Hungarian algorithm)
also increase as the number of uncertainty-robots grows.
Another important advantage of our approach is that it greatly
reduces the oscillatory allocation flips, as shown in Fig. 7. This
is because the interval Hungarian algorithm always evaluates
each uncertain utility and refuses the unreliable assignments.
The Hungarian algorithm simply assigns tasks based on the
instantaneous localization results, and flips frequently as the
localization estimates of individual uncertainty robots change.
Therefore, the robots employing our method accomplish the
tasks more efficiently, and much time and energy can be
spared.

VI. DISCUSSION AND SUGGESTIONS

The results from experiments and the comparison with other
popular methods reveal that the proposed method has unique
advantages. However, further efforts are necessary to improve

the method in order to be more robust in dealing with various
uncertainty problems. Based on our experience in conducting
the physical robot experiments, we provide the following
suggestions in applying this method for specific problems.

A. Preprocess estimates

The Interval Hungarian Algorithm computes intervals based
on the optimal assignment solution (matching in bipartite
graph). As described in this paper, a slight change in a
utility value might not alter the final solution, since such
perturbation could be safe, i.e., if it is within its allowable
interval. One interesting aspect is that, after having obtained a
set of intervals from a given utility matrix, if we make some
safe perturbation on an arbitrary utility, and feed it again into
the Hungarian method, and then feed the resultant matching
solution into interval Hungarian algorithm, then both the re-
produced assignment solution and the intervals remain the
same. However, if an unsafe perturbation of a utility is made,
the assignment solution then turns into a totally new one and
the corresponding interval matrix might change dramatically
thereafter (remember that the assigned entries and unassigned
entries have distinct types of intervals: one goes to +∞
whereas the other is from −∞). This indicates that the input
utility matrix has a significant impact on the output intervals.
This suggests that one may do well to preprocess on the
uncertainty data in order to capture the general uncertainty
characteristic before feeding them to the algorithm. Thus we
suggest to get the best possible utility estimates before running
the proposed method. In our experiments, the localized pose
of a robot, which is used to estimate corresponding utilities,
is the pose hypothesis with largest probability. This estimate
is output from the localization program by default, but, in
practice, it may not be the best estimate: a larger compact
cluster of hypotheses with smaller probabilities might have
a larger total probability than that a single small cluster but
with larger probabilities. Figures 8(a) and 8(b) illustrate such
a condition: in Fig. 8(a) at the 419th second the robot is
localized at a place about 45 meters away (corresponding to
the highest bar), however a further evaluation reveals that
it is more likely that the robot is positioned at a place
25 meters away (corresponding to the second highest bar).
This conjecture becomes true 38 seconds later, as shown in
Fig. 8(b).

Another benefit from preprocessing is that actions may
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Fig. 8. Distributions of path costs associated with localization hypotheses. (a) At the 419th second; (b) At the 457th second; (c) At the 21th second.

be determined immediately after the preprocessing is done.
This happens when the data preprocessing reveals that the
utilities are extremely uncertain, e.g., they are almost subject to
uniform distributions (see Fig. 8(c), which happens at an early
phase of the localization), and estimates of such utilities are
meaningless in solving the assignment problem. Thus, actions
for reducing uncertainties can be directly determined before
bothering to use the Interval Hungarian process.

B. Accounting for various levels of uncertainty
We tested the Interval Hungarian Algorithm with different

numbers of (homogeneous) robots with similar uncertainty in
their localizations [5]. However, in practice, multi-robot sys-
tems can involve much more complex problems. Robots may
be heterogeneous in such that the type of utility distributions
and the levels of uncertainty can be quite distinct. In fact,
sometimes it is hard to determine whether a utility is “certain”
or “uncertain” since the borderline is ill-defined. (In our
experiments, we considered a robot to be completely localized
without uncertainty if all particles were densely clustered,
but particles would never converge into a single point which
in fact is the ideal absolutely localized pose.) If the robots
have different levels of uncertainty (e.g., Gaussian distributions
with distinct standard deviations), then the reliability threshold
determination step can be modified to further improve the
assessment performance. More formally, in the preceding work
we used a conservative approach to coarsely measure the
system level uncertainty, with such a formula:

T = T0 + exp[−(n− nx)] · (1− T0), (1 < nx ≤ n) (1)
where n, nx and T0 are the total number robots, the number
of uncertainty-robots, and the initial threshold for a single
uncertainty-robot, respectively. The parameter nx treats all
uncertainty-robots uniformly and does not take their respective
levels of uncertainty into account. A more sophisticated way
to compute nx is through weighted counting, where the
weights are obtained by normalizing the levels of uncertainty
associated with robots. For example, the uncertainty level of
a Gaussian distribution can be associated with its standard
deviation.

VII. CONCLUSION

An efficient and reliable method to assess the impact of
uncertainty on system-wide goals is very important. This paper
provides new interpretations of our previously introduced In-
terval Hungarian algorithm to complement prior descriptions:

it grounds the discussion of uncertainty and its meaning
in a concrete robotic problem, i.e., dispatching to particular
emergency exits in a building. The algorithm is described
step by step using the uncertainty arising from scenarios
in which probabilistic localization is employed. We outline
why and how we designed this method. Then we provide
an extended comparison and analysis of this algorithm, and
outline lessons learned in applying this method on physical
mobile robots. This information is valuable in designing the
risk-averse assignment algorithms and addressing the practical
task allocation problems under uncertainty.
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