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Abstract. This paper reexamines a multi-robot transportation task,
introduced and studied by Vaughan and his collaborators, in which con-
strained space induces inter-agent interference. Previous research demon-
strated the effectiveness of an arbitration mechanism inspired by biolog-
ical signaling where the level of aggression displayed by each agent effec-
tively prioritizes the limited resources. This paper shows that apart from
determining the correct fitness of an individual several other factors, such
as signaling cost, precision of the outcome and properties of the resource
and task are key to determine an effective arbitration technique. Based
on these factors we present a taxonomy of the arbitration mechanisms.
The large signalling costs incurred by our simple robots using minimal set
of sensors permit us to identify scenarios in which a dominance hierarchy
outperforms, not only to no arbitration, but also aggression-based mech-
anisms. We identify how memory of past interactions can be used to the
advantage of an agent, albeit with a trade-off between cost and outcome
accuracy. We also show that the importance of a particular aggressive
interaction to long-term task performance is not trivial to determine and
depends on the task structure. Results help us identify instances where
agents may manipulate interactions to alter the frequency and duration
of aggressive encounters, affecting the overall task performance.

1 Introduction

Spatial interference is a common and important phenomenon in navigation tasks
involving multiple robots; it is a particular instance of the general problem of
resource competition amongst agents attempting to achieve their own ends while
interacting with others. When autonomous agents have an incentive to cooper-
ate, a worthwhile question is how best to mitigate the negative effects of re-
source contention. Motivated by the methods which animals employ to contest
resources, Vaughan and his collaborators (¢f. [5], [2], and [6]) have shown how
displays of stylized aggression can effectively resolve resource conflicts in a multi-
robot transportation task. That line of work has produced increasingly effective
methods for assessing the level of aggression that an individual agent should
exhibit in order to prioritize the limited resource effectively.



This paper shows that determining the correct fitness of an individual at
a particular time is only one of several aspects of effective conflict resolution.
An important consideration is the cost of the aggressive signaling. In fact, the
analogous biological mechanism is directly concerned with the interplay of signal
precision and cost: aggressive displays allow animal to assess the strength of their
resource competitors before they decide to engage in a costly fight [1]. Animals,
after all, organize themselves into a dominance hierarchy which they can use to
resolve future resource competition [4] in an inexpensive albeit static way.

In this paper, we examine the multi-robot transportation task domain that
Vaughan and his collaborators have studied. Specifically, we study a two robot
interference scenario, the goal of which is to cooperatively perform the max-
imum number of collective transportation tasks in a given time. We present a
taxonomy of arbitration mechanisms for two-agent spatial interference, including
a characterization of conflict resolution models, introduce a notion of outcome
accuracy and explicitly consider interaction cost. Results from physical robot
experiments and data-driven simulations led to following contributions:—

1. We show that there exist similar problem instances in which either dynamic
aggression or a static dominance hierarchy are advantageous.

2. We also demonstrate how memory of past interactions with respect to the
task structure and properties of the resource can result in improved future
task performance.

3. The paper shows that varying the properties of assigned task, the frequency of
spatial interference and the cost incurred in its resolution varies significantly.

4. A new “minimalist” resource arbitration method is introduced which pro-
duces dynamic outcomes—albeit with comparatively high costs—suitable for
simpler robots (with fewer sensors) than heretofore known.

5. We identify how agents may manipulate interactions to alter the frequency
and duration of aggressive encounters, affecting the overall task performance
in repetitive tasks.

We begin by giving a brief overview of previous research of interference in multi-
robot systems. Next, in Section 3 we propose a taxonomy of arbitration mecha-
nisms for two-agent spatial interference. In Section 4, we provide a comparative
study of the various arbitration models. Results of the study are based on phys-
ical robot experiments. Finally in Section 5, we designed a custom simulator
based on our physical robot data from previous section and anlyzed interference
under systemic variation of environment.

2 Related Work

Goldberg and Matarié¢ [3] have suggested using interference as a tool for eval-
uating multi-robot controllers, viz. identifying trade-off between performance
time and interference. Vaughan et al. [5] compared a dominance hierarchy to
the aggression-based strategy in a multi-robot transportation task in a simu-
lated environment. Our data below show that one strategy can be preferable
to the other, but exactly which depends on the shared resource and also on



the individual task dynamics. Brown et al. [2] introduced the concept of ratio-
nal aggression where the level of aggression is determined by the investment
made by Zuluaga and Vaughan [6] further improved on Brown et al’s per-
formance by basing the level of aggression on the investment in the shared
resource. Details on the relevant strategies compared in this work are below.
Brown et al. [2] introduced the concept of ratio-
nal aggression where the level of aggression is de-
termined by the investment made by Zuluaga and
Vaughan [6] further improved on Brown et al.’s per-
formance by basing the level of aggression on the l
investment in the shared resource. Details on the
relevant strategies compared in this work are below.

This paper uses the same controlled scenario (de-
picted in Fig. 1) as this previous line of research.
Two robots perform repetitive transportation tasks
by moving around cycles in the environment (shown
as blue and green walls they must follow). Competi- T
tion for space occurs at a narrow shared region, the
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ferent arbitration models determine who gives way.
Additionally, in [3] the authors suggested that Fig.1: The task involves
robots navigating their

changing the environment could play a role in alter- . !
respective regions (around

ing interference properties. This manifest itself in [2],
where changes in the (simulated) environment pro-
duced large standard deviations in their results. Part
of our work is an attempt to analyze and mitigate

blue and green walls, re-
spectively) but also having
to resolve a conflict in the
shared space (between the
“white strips”).

interference under systematic variation of the environment.

2.1 Arbitration Models

A resource arbitration model determines which of the two robots should have
access to the shared resource. In aggression based models each robot determines
a quantity, their level of aggression, and engages in a dynamic behavior involving
giving or taking way in the shared space.

Vaughan’s random aggression: Each agent picks a random aggression at each
encounter, resulting in a random outcome; i.e., the resource is gained by a
random agent.

Vaughan’s personal space method: The level of aggression is determined by the
amount of free space visible behind the robot in the event of interference.

Rational aggression based on local task investment: This is modeled after [6],
aggressive interaction based on local task investment, where the robot “dis-
plays its aggression” by moving backward a distance inversely proportional
to the distance traveled so far in the constrained region, and then moving
forward until it bumps again. The robot’s controller is shown in Figure 2(a).

Linear dominance hierarchy: A fixed dominance is assigned to each robot be-
fore they start their spatial navigation and each one follows this at every
encounter to determine who gets right-of-way. Figure 2(b) shows this.



Cutting your Losses: Some memory of local task performance is added to the
rational aggression method. When a robot meets an opponent inside the
girdle, it displays its level of aggression for at most ¢ attempts. At the
same time it measures and remembers the cost it incurs in this display, by
measuring the lose or gain in the shared space distance from the time it
starts its aggressive display. Figure 2(c) gives this mechanism.

Random walk: As soon as a robot encounters an opponent, it backs a random
distance. It then moves forward and if the opponent is still in the girdle, it
again moves back by a random distance. The opponent also follows the same
protocol. Eventually one of the robots is pushed out of the girdle. Figure 2(d)
illustrates this mechanism.
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Fig. 2: Details for four different arbitration mechanisms.

3 Taxonomy of spatial conflict resolution models

We propose a taxonomy of conflict resolution models with the following axes:—

e Dynamic vs. static: An arbitration method is static if and only if it does not employ
information about a particular encounter to resolve that conflict.

e Deterministic (DET) vs. Probabilistic (PROB): A method is deterministic if and
only if, given the same scenario, the resource is always awarded to the same agent.

e High (HOA) vs. Low outcome accuracy (LOA): The former has higher probability
of selecting the rational winner. The robot with the greatest local investment should
gain the resource in rational interactions.

e Costly (HIGHCOST) vs. cheap (LOWCOST): Time, energy and other resources
may be involved in an arbitration mechanism. Their utility depends on the com-
parative saving and/or trade-off of these costs.
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Fig. 3: An example of a robot giving way. After bumping each other, both robots move
back and one exits the girdle to make room.



Different arbitration models can be denoted by a quadruplet:

Model Classification
Linear dominance hierarchy STATIC DET LOA  LOWCOST
Vaughan’s random aggression STATIC PROB LOA LOWCOST
Random walk DYNAMIC PROB LOA  LOWCOST
Vaughan’s Personal space DYNAMIC DET HOA  HIGHCOST
Rational aggression DYNAMIC PROB HOA  HIGHCOST
Cutting your losses DYNAMIC PROB HOA LOWCOST

4 Comparative Study

4.1 Implementation Details

We imposed spatial interference on physical robots by making them navigate
through an environment as shown in Figure 1. Interference occurs when two
iRobot Creates’s R4 and R p, 33cm in diameter attempt to cross a girdle ~53cm
wide from opposite directions as shown by the arrows in Figure 1. Rp’s trans-
portation task length is almost half that of R4. R4 does 10 traversals, while
Rp covers 20. We assigned these numbers so as to avoid situations where the
robot performing the shorter task finishes all its trips while the other one keeps
traversing an encounter-free region.

4.2 Aggressive Interaction and Linear Dominance

Both these models were executed in environments with different girdle lengths.
The aim is to assess the role the shared resource plays on arbitration outcomes.

Varying Girdle Length: The utility of aggressive interaction is reduced when
both robots have large, almost equal aggression levels, a phenomenon which
happens when encounters are at the center of a large enough girdle. This can
be observed in Figure 4, as the aggression strategy performs increasingly poorly
with increasing girdle length. A dominance hierarchy, despite it not necessarily
resolving the conflict toward the agent with the greater investment, proves to be
a better arbitration method in such cases.

However for encounters at the ends of the girdle, the short aggressive inter-
actions coupled with the ability to produce a rational winner makes aggression
based arbitration beneficial over dominance. Vaughan et al. [5] provide an in-
stance where choice of aggression level proves no better than random selection
of aggression (Vaughan’s random aggression). In fact, the outcome of such a
random mechanism is an average drawn from the outcomes of following either
extremes of the linear dominance hierarchy. In the data above the advantage of
such a mechanism can be seen.
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Fig.4: Average task times of R4 and Rp with varying girdle lengths (GL) in meters,

fixed task ratio 25:38. (Results are from three experiments averaged for each of the three
strategies, for each of the three cases. We show 2 cases for space constraints.)



An important question is “how precisely can the outcome of the arbitration be
predicted given the initial position of encounter?” When the robots have approxi-
mately equal local task investment, as in the setup above, the noise in the robot’s
interactions breaks the symmetry. In Figure 5 the mixed red and blue region near
the center of the girdle (girdle proportion ~0.5) shows that there are situations
when Ry’s local investment is less
than Rp, but R4 wins or vice-versa.
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when the less dominant robot has higher local investment and still retreats. If the
task ratios are appropriate, then such scenarios may occur only rarely, making
dominance arbitration the superior arbitration model for such environments.
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Fig. 6: The duration of aggressive interaction of two physically grounded robots changes
as we vary task ratio, suggesting the importance of task structure in spatial interference.
These experiments were performed on physical robots. We reexamine effects of task
structure in spatial interference through exhaustive simulation in the next section.

Varying Task Ratio: We examined how the properties of the task assigned to
each agent influence aggressive encounters. This factor dictates the time when
a robot starts its journey inside the girdle relative to the other and, thus, the
initial position where they end up meeting. There is also the chance that they
do not meet at all. The variation of the duration of aggressive interactions as
shown in Figure 6 indicates the importance of task structure in aggression based
arbitration. Task structure is reexamined through exhaustive simulation below.
Cutting your Losses The utility of aggressive encounters can be improved
by adding memory of recent performance. The robot measures and remembers
the loss or gain in the shared space distance from the time it starts its ag-
gressive display. If it repetitively loses distance, then it is unlikely to win the
whole interaction. In such a situation it is beneficial to retreat. The greater the
number of confirmations about the gain/loss in distance, the more accurate its
decision. Figure 7 shows this decrease in error with an increase in the number
of confirmations. The tradeoff here is whether to take an early

Random Walk The attraction of random walk arbitration is its minimalism
compared to other arbitration methods: robots do not need to sense or estimate
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Fig. 7: The intuition behind the “cutting your losses” strategy is illustrated via an ex-
ample of the aggression-based interaction. The sign of the single-time gain (denoted A
in the graphs) indicates a likely win or loss. Waiting longer before measuring sgn(A) re-
duces the estimate error due to the “escalation” dynamics. The results are from physical
robot experiments.

their positions, since the position the bump takes place implicitly encodes the
dynamic variable. It is perhaps somewhat surprising that a dynamic arbitration
mechanism is possible despite neither of the robots having the means to record
their investment in the task.

5 Task Ratio—A Macroscopic Study

Designed a custom simulator that uses physical robot data to model dominance
and aggressive robot interactions for different girdle lengths across a range of
task ratios. We ran the simulator, varying girdle lengths (GL) from 10m to 150m
and, for each girdle length, task lengths varied from 15m to 150m. The results
represent complementary foci: either minimizing absolute signal cost via a static
arbitration, or incurring whatever cost to ensure a dynamic arbitration.

Number of encounters

ROBOT A task completions ROBOT B task completions

150

1208

(a) Number of encounters (b) Laps completed by R4 (¢) Laps completed by Rz

Fig.8: Dominance for girdle length = 30m, R, is dominator. The x-axis shows R4’s
task length, y-axis that of Rp. (a) Color bars shows the relative number of encoun-
ters,(b), (c) Color bar shows the relative number of laps finished when at least one of the
robots completes 150 laps. Points A to F are detailed in Figure 9.

Dominance Model Figure 8 shows the performance in a girdle length of 30m
when R4 is the dominator. Interesting regions from these plots were selected to
investigate the interaction dynamics for the first 20,000 seconds (long enough
to show long-term behavior). These are marked with A—F in Figure 9, and
described in detail in that caption.
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Fig. 9: Dominance for girdle length = 30m, R4 is dominator. The girdle proportions are
with respect to the position of robot R4. TA corresponds to the task length of R4, and
TB to that of Rp. Results presented are based on simulation experiments. We observe
the following at each point:

A & B— Every time Rp makes an attempt to cross the girdle, it meets the dominator R4
and is pushed out of the girdle, making no progress whereas R4 finishes more than
15 laps during the alloted time. This is clearly a model of resource starvation.

E— In this case, R4 and Rp meet frequently and with R4 being the dominator, Rp is
able to complete fewer trips than R4 with such frequent spatial interference.

C— The encounter position is close to Rp’s girdle entry point, so even if Rp retreats
(Ra being the dominator) the local investment made by Rp is less. R4 is the
rational winner with aggression but at the cost of aggressive interaction time. Also
they do not encounter one another every time Rp enters the girdle. But Rg’s
shorter task allows it to complete more trips than Ra4.

F & D— The number of task iterations completed by both robots are almost equal. D be-
longs to the region where the number of encounters are less frequent (Figure 8(a))
and, if they occur at all, they are at the girdle end when R4 is about to exit (see
Figure 9[D]). In such a situation R4 is the rational winner and the dominance
hierarchy (with dominator R4) is the best model to follow.

Aggression Model The model was run to compare with the dominance method.

Collective best performance across varying girdle length: Certain combina-
tions of task lengths takes significantly longer to complete 100 tasks (Figure
omitted due to space restrictions). One might think that this is due to severe
interference for these task ratios. However, plotting the interference count we
find that this is not always true. The following considers one fixed girdle length.

Collective vs. individual best performance for fized girdle length: There are
regions of high interference corresponding to regions of low task completion
time (Figure omitted due to space restrictions). These are the instances where
the robots met often but engaged in less costly aggressive interactions. On the
other hand, there also exist regions of low interference but with high task times.
These regions involve high cost aggressive interactions.



We further investigate as to what happens for certain combinations of task
lengths, similar to what we did for dominance model. Positions of first encounter
for every task iteration completed in the first 20,000s are shown (Figure 10).
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Fig. 10: Aggression GL30. The girdle proportion are w.r.t. the position of robot R4.

A— R4 and Rp meet frequently. The position of encounter inside the girdle results
in costly interactionsi.The number of task iterations completed by R4 and Rp is
almost equal for the first 20,000 seconds of simulation and every time a rational
winner is chosen. Compare this with how Rp performs when R 4 is the dominator
(Fig. 9[A] and 9[B]). Rp did not make any progress during the time allotted.
Here the trade-off is to, either to engage in costly aggressive interactions obtaining
a rational winner, giving a fair chance of winning to each robot or to resort to
(cheap) dominance and bias towards one agent.

B— R4 and Rp do not meet as frequently here, but whenever they do, long aggres-
sive interactions result: Rp is the rational winner in all cases. Compare this with
Figure 9[B] where Rp hardly made any progress. The best resolution mechanism
would be with Rp as dominator so that no aggression cost need be paid.

C— This is the reciprocal of case B and our earlier conclusion (but for R4) holds true.

D— The number of task iterations completed by R 4 and R g are almost equal. We notice
that D belongs to the region where the number of encounters are less frequent and
they occur at the ends of the girdle when Ry is about to exit (Figure 9[D]). We
had earlier concluded that, in such a situation R4 is the rational winner and
the dominance hierarchy (with R4 being the dominator) is the best interference
model to follow. We see that aggressive arbitration is also a reasonable interference
resolution mechanism. The reason being that these regions have cheap interactions.

E— Compare Figure 10[E] with Figure 9[E]. The number of laps which Rz completes
with aggressive signaling doubles compared with when it is dominated. However,
the decrease in the number of laps of R4 is not that significant in both these
modes of arbitration. We do see more frequent encounters in case of aggressive
interactions, but all of these take place at the very ends of the girdle resulting in
cheap arbitration, making it beneficial.



6 Conclusion

Several factors contribute to conflict resolution and its effectiveness:

Cost vs. precision of the arbitration mechanism—Time and energy cost are in-
curred in resolving resource conflicts. This influences the utility of aggressive
displays in the first place.

Properties of the shared resource for which the agents are competing—This
affects, among other things, the cost of communicating its aggression and
what constitutes a worthwhile investment.

The task which each agent is assigned to perform—This can be coupled through
the shared resource. This coupling, effects individual and collective dynamics.

The inherent noise in the “communication” channel—Noise plays a role in dy-
namic arbitration mechanisms: it can be beneficial in breaking symmetry, a
situation which occurs when agents have identical aggression.

From all these facts we can conclude that there cannot be just one single best
arbitration mechanism catering to all situations. We have also shown instances
where a small variation of task ratio may cause a significant change in the task
dynamics. With a prior knowledge of this entire task performance space, a single
unfavorable interaction can be predicted beforehand, and by adding a wait to its
task navigation, the robot can shift its performance to a more favorable region.
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