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Abstract—Auction and market-based mechanisms are among
the most popular methods for distributed task allocation in multi-
robot systems. Most of these mechanisms were designed in a
heuristic way and analysis of the quality of the resulting assign-
ment solution is rare. This paper presents a new market-based
multi-robot task allocation algorithm that produces optimal
assignments. Rather than adopting a buyer’s “selfish” bidding
perspective as in previous auction/market-based approaches, the
proposed method approaches auctioning from a merchant’s point
of view, producing a pricing policy that responds to cliques of
customers. The algorithm uses price escalation to clear a market
of all its goods, producing a state of equilibrium that satisfies both
the merchant and customers. The proposed method can be used
as a general assignment algorithm as it has a time complexity
(O(n3lgn)) close to the fastest state-of-the-art algorithms (O(n3))
but is extremely easy to implement. As in previous research,
the economic model reflects the distributed nature of markets
inherently: in this paper it leads directly to a decentralized
method ideally suited for distributed multi-robot systems.

I. INTRODUCTION

Task allocation and assignment methods have become an
important paradigm for coordinating teams of robots. Task
allocation, as we study here, is a process that involves each
robot estimating the utility expected for performing available
tasks, and computing an assignment of tasks to robots in
order to maximize the collective benefit. Oftentimes, these
matchings are computed repeatedly to allow the robot team
to adapt collectively as circumstances change. In such cases
both running-time and quality of the resulting robot-to-task
matching are important determinants of the team’s efficiency.

Most classic optimal assignment algorithms were originally
developed by operations researchers and are not well suited
to multi-robot task allocation. One typically desires decen-
tralization to enhance the system’s tolerance of individual
failures and to improve the practical running time. Among
the popular optimal assignment algorithms developed by op-
erations researchers, only one algorithm can be said to be con-
veniently distributable: Bertsekas’s famous optimal AUCTION
algorithm [2]. The economic interpretation of decentralized
auctioning and bidding procedures has been favored by many
roboticists who, in the last three decades, have developed
numerous decentralized assignment approaches by employing
auction or auction-like mechanisms. Although the auctioning
idea is favored by roboticists, Bertsekas’s AUCTION algorithm
itself is not widely used in robotics. We believe that this is
because it suffers from several important drawbacks, which

we analyze and address in this paper. Instead, roboticists have
designed their own auction/market-based strategies in order to
adapt to various multi-robot architectures. Unfortunately most
of the existing techniques fail to achieve optimality (see review
in [7]) and few quantify the quality of the resulting allocation.

Nevertheless, the AUCTION algorithm provides a good
framework for designing distributable assignment algorithms.
We present a new algorithm which inherits the features and
merits of the AUCTION algorithm while overcoming some of
the drawbacks that impede wider adoption in robotics. The
new method improves on the AUCTION algorithm in that the
redesign removes the intrinsic data dependence. It reaches the
global optimum with a time complexity close to the state-of-
the-art (even for centralized) methods and, like most market-
based approaches, coordination involves only sub-teams.

The new method, instead of auctioning via a series of “self-
ish” bids from customers, is a mechanism from the perspective
of a merchant. It produces a pricing policy that incentivizes
coordination between cliques of agents. This paper shows that
it is possible to employ a market-based method suited to
distributed implementation for multi-robot systems, and still
attain global optimality, and do so with strongly polynomial
running time (and iterations).

II. RELATED WORK

We address the classic task assignment problem where
robots and tasks are matched by forming a one-to-one map-
ping. This has been termed the single-task robots, single-robot
tasks, instantaneous assignment problem (ST-SR-IA) [11].

A. Optimal Assignment Algorithms and Decentralization
Many optimal assignment algorithms have been developed

(see reviews [4, 24]). The majority are primal-dual methods
(details of primal and dual formulations are presented in
sections that follow). Important examples include the well-
known Hungarian algorithm [15], which solves the matching
problem by manipulating a matching bipartite graph. Several
shortest augmenting path algorithms (e.g., see [5]) were in-
spired by the Hungarian algorithm and are also primal-dual
methods themselves. These algorithms are capable of solving
the problem with O(n3) time complexity when certain search-
ing techniques and/or auxiliary data structures are employed.
But one drawback is the difficulty that arises in producing
decentralized variants of these algorithms. This is because
the construction of an alternating tree for seeking (shortest)



augmenting paths may require searching and labeling the
entire graph. Some recent progress in solving the assignment
in a distributed way has been made (e.g., see work of [12])
although information from all individual agents is still required
even when the computation is decentralized. This defect limits
the applicability of these algorithms in distributed settings.

Another important instance is the AUCTION algorithm de-
veloped by Bertsekas from the late 70s to early 90s [2]. This
algorithm’s basic computational primitives (viz., bidding and
auctioning) are highly localized rather than relying on queries
of global information; this led to its wide-spread recognition
as a naturally distributable assignment algorithm. Yet the algo-
rithm itself has not been widely adopted for multi-robot prob-
lems. There are several possible reasons. The initial version
of the AUCTION algorithm [1] can be naturally decentralized,
but it has running time that is not bounded for arbitrary
data. Applicability to the robotic domain is hindered by the
large and uncertain time (and communication) complexity.
Later versions employ some techniques (e.g., ε-scaling [2]) to
remove the data dependence but at the cost of undermining the
decentralized nature. For instance, ε-scaling requires multiple
runs of the whole algorithm, causing prohibitive communica-
tion. The later versions lost the connection with the original
auctioning primitives, forfeiting the economic interpretation.
These extensions all increase the implementation complexity
significantly. Recently [26] extended AUCTION to use local
information over a multi-hop network; unsurprisingly it was
based on the initial version.

Another important optimal assignment algorithm is the
Dinic-Kronrod algorithm [8]. This algorithm was the first
O(n3) optimal assignment algorithm but is independent of the
primal-dual theories. Although Dinic-Kronrod’s algorithm is
not distributable, its source-sink concept and manipulation (see
details in [4]) inspired our process. Although our method has
an inferior time complexity (O(n3lgn)), it is distributable —
amongst other features.

B. Multi-robot Task Allocation Methods
Most classic optimal assignment algorithms that reach the

global optimal are centralized. A review of the literature shows
that a large set of decentralized multi-robot task allocation
methods employ auctioning mechanisms; representative ex-
amples include: the distributed market-based paradigm [6,
13, 21], the auction-based MURDOCH model [10, 9], and
cooperative auctions [14, 22]. These techniques have been
extended to a wide range of multi-robot scenarios, applied to
NP-hard problems like routing, planning, scheduling, or used
to address problems where partial knowledge is assumed or
local information employed [16, 22]. For these reasons, most
often the global optimum will not be obtained (see review
in [7]); often the resulting allocation quality remains unknown.

Other methods for task assignment operate by partitioning
the robots and/or tasks into subgroups and repeating the pro-
cess recursively [20, 25, 17], as well as behavior-based or role-
based strategies [23]. Recently, we proposed an assignment
method independent of the market-based framework [18]. That

algorithm was shown to be particularly efficient and it is used
for comparison with this proposed algorithm in Section VII.

In sum: despite numerous auction/market-based approaches
having been developed for multi-robot task allocation, nearly
all are sub-optimal methods. Until this paper, the AUCTION
algorithm was the only optimal method in this class.

III. PRELIMINARIES

An assignment A for a multi-robot system consists of a set
of robots R and a set of tasks T . (To simplify presentation
of the analysis, we assume |R| = |T | = n although the algo-
rithms described in this paper handle the cases |R| < |T | too.)
Given utility matrix U = (uij)n×n, where uij : R× T → R+

denotes the utility of having robot i perform task j, the ob-
jective is to find an assignment permutation ϕ : {i} → {j} so
that the overall utility u(ϕ) =

∑n
i=1 u(i, ϕ(i)) is maximized.

This problem can be formulated equivalently by a pair of
linear programs. The first is the primal program, which is a
maximization formulation:

maximize f(x) =
∑
i

∑
j

uijxij ,

subject to
∑
j

xij = 1, ∀i,∑
i

xij = 1, ∀j,

xij ≥ 0 ∀(i, j).

(1)

where an optimal solution eventually is an extreme point of
its feasible set (i.e., xij ∈ {0, 1}). The constraints

∑
j xij = 1

and
∑
i xij = 1 capture the mutual exclusion property that

restricts each robot to be assigned to exactly one task and
each task to be allocated to a unique robot, respectively.

In auctions two roles are employed: each agent expecting
a task acts as a bidder and, for any round of bidding, an
auctioneer determines the result. The auctioneer can be any
agent (either an honest bidder or an agent excluded from the
current bidding). The utility uij in such scenarios is interpreted
as a budget that bidder (agent) i has for object (task) j. One
may also think of it as an affordable price for the object, as
it is the value that the bidder thinks the object is worth.

Definition 3.1: The profit margin mij is defined as the
difference between the budget price uij and the actual price
paid pj :

mij = uij − pj . (2)

Definition 3.2: A price escalation operation involves rais-
ing prices on individual or groups of items. Raising individual
prices involves adding a δ ∈ R+ (associated with a single
object j) to increase only its price to pj + δ. A many-item
price raising operation makes the same price adjustment δ to
a set of objects S:

pj =

{
pj + δ, ∀j ∈ S,
pj , otherwise.

(3)

It is straightforward to prove that raising the prices associated
with tasks does not change the assignment problem since all
bidders are affected equally by an escalation operation.



Definition 3.3: The preferred choice j∗ for bidder i is an
item with maximal profit margin:

j∗ = argmax∀j{mij}. (4)

Given a choice of different objects, a rational bidder would
like to choose an object with the largest profit margin. As-
sessing choices considers only an individual’s local row in
the utility matrix and can be thought of as reflecting “selfish
utility maximizing behavior.” Unfortunately merely combining
preferred choices of different bidders is likely to violate the
mutual exclusion property and produce an infeasible assign-
ment.

Definition 3.4: An agent’s alternate choices are the items
with profit margins identical to the preferred choice, i.e.,

{j′} = {j | mij = mij∗}, ∀j 6= j∗. (5)

Definition 3.5: A preferred choice transfer j∗ � j′ is the
operation that transfers from a current preferred choice j∗ to
an alternate choice j′, where mij∗ = mij′ for bidder i. From
a profit incentive point of view, the buyer’s utility is invariant
to these transfer operations; they can be interpreted merely as
a difference in the manner in which we break ties.

IV. THE AUCTION ALGORITHM

The AUCTION algorithm, proposed by Bertsekas [1], is a
dual-based algorithm for computing an optimal assignment. It
has an interpretation in which a team of agents are seen as
bidding on a set of tasks. The algorithm can be understood by
examining the dual of the primal problem (1), as follows:

minimize g(π,p) =

n∑
i=1

πi +

n∑
j=1

pj ,

subject to πi + pj ≥ uij , ∀(i, j).
(6)

If the set of prices, p, have been determined, then
πi ≥ uij − pj , ∀j, and g(π,p) is minimized if πi equals the
smallest value in its feasible set. This is equivalent to:

πi = max∀j{uij − pj} = max∀j{mij}. (7)

Along with (7), Program (6) becomes unconstrained:

g(p) =
∑
i

max∀j{uij − pj}+
∑
j

pj , (8)

meaning that price p simultaneously becomes the primal
optimal and the dual optimal if and only if

mij∗ = max∀j{uij − pj} ∀i, (9)

where mij∗ denotes the largest profit margin for agent i
obtained from its preferred choice j∗.

Each iteration of the AUCTION algorithm consists of two
phases: the bidding phase and the assignment phase. To
guarantee termination of the algorithm in finite steps, a
mechanism called ε-complementary slackness (ε-CS) is used
to perturb the problem when a potential stall occurs. This
happens if the problem deadlocks because the bidding price
increment becomes zero (e.g., as a group of bidders have equal
preferences for a set of items).

Definition 4.1: The ε-complementary slackness condition
is defined as:

mij∗ ≥ max∀j{uij − pj} − ε. (10)

In other words, an extra amount of ε > 0 is sacrificed from
the maximal profit margin in order to beat out other bidders
and win the preferred choice.

Bidding phase:
If agent i has a preferred choice that conflicts with other agents
(assume they form a set P(j) for a common item j), it is then
engaged in a bidding competition and computes the bidding
increment (i.e., bidding prices that this agent would like to
further add)

γi = vi − wi + ε, (11)

where vi is the profit margin of preferred choice and wi is
the profit margin of a second preferred choice, more formally,

vi = max∀j{mij}, wi = max∀j 6=j∗{mij}. (12)

Assignment phase:
A single winner will be determined as it will be the one with
highest bidding increment

i∗ = argmaxi∈P(j)γi. (13)

The price of object j is raised by maxi∈P(j)γi and published
to all bidders i ∈ P(j). Agents that do not win the item, then
alter their preferred choices to select other items. /

These bidding and assignment phases repeat until no conflict
between preferred choices remain. Once this occurs, the result
solves the assignment problem.

Note that ε must be selected with care to ensure that opti-
mality will not be violated. An appropriate value is obtained
by ε < 1

n when all uij are integers. The time complex-
ity of the resulting scheme is then O(n3 lg (nCε )), where
C = max(i,j)|uij |. This shows that AUCTION is a pseudo-
polynomial algorithm because the running time is influenced
by the input data. A polynomial version of the algorithm has
been described by using a multi-trial method called ε-scaling.
Unfortunately multi-trial methods undermine the decentralized
nature of the approach and, hence, its appropriateness for
distributed robot applications — so far as we are aware, the
technique has never been used in the robot task assignment
literature. Thus, we do not discuss them further in this work;
for more detail see [2].

V. THE PROPOSED ALGORITHM

The pricing mechanism in AUCTION provides a good
starting point to develop a market-based optimal assignment
algorithm that is naturally distributable but also has strongly
polynomial running time. In the AUCTION algorithm, the
optimization steps can be interpreted from the perspective
of bidders, each behaving selfishly to eliminate competitors
from their preferred tasks. In contrast, the proposed algorithm
adopts the merchant’s point of view. The merchant seeks
to clear the market of goods through strategic selection of
prices. In a sense, the algorithm has the merchant steer
purchasing behavior of the customers.



A. Algorithm Description

To view the proposed algorithm from an economic perspec-
tive, suppose that the tasks, j ∈ [1, n], are articles in a market,
only one instance of each article is available, and the agents,
i ∈ [1, n], are customers visiting the market. The utility value
uij still represents the budget of customer i for article j.
Assume that each customer is allowed to buy one item in
this market and the merchant wants to clear the market (i.e.,
sell all the articles whilst ensuring each customer obtains an
article). Once this is achieved, the market reaches a form of
equilibrium.

Just like standard bidders in an auction, the customers make
their own independent choices that reflect their local prefer-
ences. A merchant is selected in the same way as selecting
an auctioneer. Specifically, for articles preferred by multiple
customers, the merchant will raise prices by an amount so that
the articles are no longer the most profitable choice for some
customers. This is in contrast to the AUCTION algorithm in
which bidders are responsible for raising the prices. As the
merchant instigates escalation, the customers are motivated to
consider other articles. This way of guiding the customer’s
choices reflects the broader philosophy of altering the behavior
of people via economic incentivization, as is widely used by
policy-makers in the real world [19].

Algorithm V.1 MARKET STAGE (t)
1: set Ť := {t}, Ř := Ř ∪ {i | ϕ(i) = t}
2: sink := 0, ī := 0, j̄ := 0; record vectors ξ := {0}, Ω := {∅}
3: while sink = 0 do
4: δ :=∞
5: for each i in set Ř do
6: l := argmaxj∈T\Ť {uij − pj}
7: v := uiϕ(i) − pϕ(i), w := uil − pl
8: if v − w < δ then
9: δ := v − w

10: ī := i, j̄ := l
11: for each j in set Ť do
12: pj := pj + δ
13: Ωī := Ωī ∪ {j̄}, ξj̄ := ī

14: if {i | ϕ(i) = sink} = ∅ then
15: sink := j̄
16: else
17: Ť := Ť ∪ {j̄}, Ř := Ř ∪ {i | ϕ(i) = j̄}

18: jϕ := 0, jp := sink
19: while jϕ 6= t do
20: jϕ := ϕ(̄i), ϕ(̄i) := jp
21: if jϕ 6= t then
22: ī := ξjϕ
23: jp := jϕ

Algorithm V.2 MARKET MAIN
1: for j := 1 to n do
2: while |{i | ϕ(i) = j, ∀i}| > 1 do
3: MARKET STAGE(j)

The essence of the proposed algorithm is that the merchant
employs a conservative means to stimulate the market so that,
after each stage, one previously ignored item garners sufficient
attention to be sold owing to the appropriate adjustments in

price. For an arbitrary item t, if multiple customers select
it as their preferred choice, these customers form a clique
Ř = P(t) with a common preference conflict for article t.
In the case where there are multiple conflicted articles, they
form a set Ť = {t}. A virtual merchant is randomly selected
from either Ř or R\Ř. Customers i ∈ Ř describe their budget
margins vi − wi to the merchant, where vi = maxj∈Ť {mij}
is the maximal profit margin for articles currently conflicted
(in set Ť ), and wi = maxj∈T\Ť {mij} is the maximal profit
margin for articles that are not currently conflicted (not in
set Ť ). If the prices of currently conflicted articles escalate
more than a customer’s budget margin, that customer will lose
interest in the articles and switch his preference to others.
Having obtained budget margin information, the merchant
computes the minimum price increment δ = mini∈Ř{vi−wi}
and increases the prices of all articles in Ť .

After this operation, at least one customer must have new
alternate choices {j′} from T \ Ť . If any of these alternate
choices are only preferred by single (non-conflicted) cus-
tomers, they can be immediately sold to them. (We call these
available non-conflicted articles “sinks” in the allocation.)
Otherwise, set {j′} are now conflicting, Ť ← Ť ∪ {j′}, and
the clique grows Ř ← Ř ∪ {i | ϕ(i) = j′, ∀j′}, where
ϕ(�) denotes the assignment mapping as defined before. The
merchant will adjust the prices again and this process repeats
until no customer is involved in a conflict. In Algorithm V.1,
the first while loop (Lines 3—17) is the process of finding the
minimum price increment which expands sets Ř and Ť for
each iteration. The second while loop (Lines 19—23) is the
assignment process, which tracks back from the sink (newly
sold article) to the source t (original conflicted article) with
the help of vectors (Ω and ξ) recording alternate choices,
and updates the assignment via preferred choice transfers.
Algorithm V.2 calls the individual stages until all customers
obtain unique items.

Fig. 1 gives a simple assignment problem as an example
that demonstrates the progress of the algorithm. The horizontal
array across the top of each utility matrix (shown in red)
represents the prices for the items; the values in the matri-
ces are profit margins (uij − pj). Shaded cells and dashed
cells denote the preferred choices and alternate choices for
customers, respectively. The diamonds to the left of some of
the rows denote competing customers, while triangles along
the bottom point to the items that are conflicting. Fig. 2 gives
this same example from an equilibrium flow perspective.

B. Analysis: Global Optimality and Time Complexity

The proposed algorithm produces globally optimal assign-
ment solutions. Proof of this (in common with the manner of
proof for most primal-dual methods including the AUCTION
algorithm) depends on examining the values of dual variables
once the market equilibrium is reached. The customers’ profit
margins and articles’ prices are the dual variables. In each
iteration customers are only interested in purchasing their
preferred choices (which is also the reason for the conflicting
articles and hence violation of the mutual exclusion property).



(a) (b) (c) (d) (e)
Fig. 1. Demonstration on a simple assignment example. Prices, shown along the top, are escalated with each iteration. Note how the initially independent
fourth robot only becomes involved when another robot’s purchasing preferences bring them into conflict in (c).

(a) (b) (c) (d) (e)
Fig. 2. Visualization as an equilibrium flow. We wish to manipulate the four striped balls so they flow into four wired spherical containers that are connected
with tunnels among each other. The way to remove balls from a wired container is to create a perturbation, i.e., add energy to a container to make the enclosed
balls unstable (imagine the balls behave like heated microscopic particles). The essence of the algorithm is that it always adds the minimum energy required
to push exactly one ball out of a crowded container; and it guarantees that a ball will never flow back into an already heated sphere (see Fig. 2(d)). A stage
finishes when one ball flows into a previously empty sphere (see Fig. 2(b) and 2(e)).

Each customer i always maximizes his profit margin

max mi = max∀j{uij − pj}. (14)

Since the relationship expressed in Eq. (7)—(9) is an if and
only if, we can begin with Eq. (9) (as equivalently expressed
in Eq. (14) and determine that

mi + pj ≥ uij , ∀(i, j). (15)

which is essentially the constraint of the dual program (6).
Thus, the dual program always maintains its feasibility. More-
over, by plugging Eq. (14) into the objective function of the
dual program, the new objective function is unconstrained and
in every iteration is maintained at a local optimum by each
customer:

g(p) =
∑
i

max∀j{uij − pj}+
∑
j

pj . (16)

Besides, the algorithm terminates at precisely the moment
when each customer obtains a preferred choice and no con-
flicting articles remain. Or put another way, the moment when
the primal program (1) also becomes feasible. Feasibility of
both primal and dual as well as the optimality of the dual
yields the global optimal solution for both programs, as stated
in the duality theorems [3]. Therefore, when all articles are
sold out, the global optimal solution must be produced. This
proves the condition of global optimality.

The proposed algorithm has a time complexity of
O(n3 lg n). During each stage, the most costly operations are
the computation of budget margin vi−wi for rows i ∈ Ř. The
vi are always the maximal profit margins in Ť , while wi are
always the maximal profit margins in T \Ť . The sets of Ť (and
by implication T \ Ť ) change dynamically with each iteration,
so efficiently maintaining the largest values requires a data
structure like a priority queue or balanced tree. By employing
one of these data structures, O(lgn) time is needed to extract
the maximum value, and there are at most n2 entries, so at

most n2 such operations, requiring a worst case O(n2lgn) per
stage. A single stage will assign one non-conflicting task and
there are at most n − 1 non-conflicting tasks to be assigned,
giving the total time complexity of O(n3 lg n).

C. Analysis: An Economic Perspective

Intuitively, the larger the price escalation, the greater the
number of customers who —though showing interest in pur-
chasing those goods previously— are likely to be discouraged.
To quantify the effects of escalation, the price increment δj
for article j is denoted by∗:

mini∈P(j){vi − wi} ≤ δj ≤ maxi∈P(j){vi − wi}, (17)

where P(�) has the same meaning as before. Thus, the price
increment must be between the largest profit margin, from the
most willing customer, and the smallest profit margin, from
the customer with weakest purchasing incentive but who is
still intending to buy the good.

Definition 5.1: Given a price increment δj for article j, we
use parameter Γ ∈ N where 1 ≤ Γ ≤ |P(j)| to quantify this
price adjustment’s incentive.

Γ = |{i | vi − wi ≤ δj ,∀i ∈ P(j)}| , (18)

This measures the effectiveness of the incentive’s ability to
alter customers’ preferences, i.e., a larger incentive indicates
a greater alteration of the market’s behavior, and vice versa.

Proposition 5.1: In the AUCTION algorithm, an auctioning
operation on an arbitrary item j always has the largest market
incentive: Γ = |P(j)|.
This follows because in the AUCTION algorithm,

δj = maxi∈P(j){vi − wi}+ ε, (19)

∗Note that the word pricing is also used in the linear programming
literature, in particular for branch-and-bound and cutting plane methods. They
use the term to describe the dynamic introduction of new variables. Their use
is distinct and should not be confused with the economic use in this paper.



with ε > 0, showing that the preferred choice of this item
is changed for all the involved bidders. However, the bidder
with sacrifice equal to ε becomes the winner (as interpreted
in [2], he takes “risk” for winning this item) and the other
Γ− 1 bidders are forced to alter their preferences.

Proposition 5.2: The proposed algorithm always has the
smallest incentive for (individual or group) price escalation.

In the case of individual price escalation for an ar-
bitrary item j, we compute the price increment via
δj = mini∈P(j){vi − wi}. From (18), this is equivalent to

Γ =
∣∣{i | vi − wi = mini∈P(j){vi − wi}, ∀i ∈ P(j)}

∣∣ . (20)

In the case of price escalation for a group of items, a common
price increment of δŤ = mini∈⋃ P(j){vi − wi},∀j ∈ Ť is used
on all items in set Ť . Let Ř =

⋃
j∈Ť P(j), then the cumulative

incentives from these items are

Γ
′

=
∑
j∈Ť

∣∣{i | vi − wi = mini∈Ř{vi − wi}, ∀i ∈ Ř}
∣∣ . (21)

The merchant always attempts the smallest price increment
that is sufficient to alter a minimum number (but at least one)
customers’ purchasing preferences. This is a critical distinction
from the AUCTION algorithm, and it is precisely the reason that
global optimality is obtained with strongly polynomial time.

VI. ALGORITHM DECENTRALIZATION

The new algorithm is suitable for decentralization the same
way as the AUCTION algorithm: both computation and commu-
nication become localized to involve sub-teams of robots. We
assume that customers (robots) have knowledge of all articles
(tasks) and are able to locate all conflicted customers. This can
be achieved in different ways depending on the communication
model involved (a typical example is via broadcast over a
publisher/subscriber mechanism as used in MURDOCH [9, 10]).
If communication has limited range, conflicted customers
can locate and communicate with each other via multi-hop
message passing (see [26]); additional bookkeeping may be
required if connectivity is not maintained or the topology
changes during execution of the algorithm.

Only those customers with preferences which cause con-
flicts over the same articles need be involved in resolving
the conflict. In other words, only the robots with prefer-
ences failing to satisfy the mutual exclusion property need
communicate. For agents with non-conflicting preferences,
price escalation on other articles will never increase their
profit margins and, thus, their current preferred choices remain
unaltered. They only become involved when they enter the
current stage’s clique, which occurs when they conflict with
the alternate choices of some agent(s) in the clique, (Step 17
in Algorithm V.1). Otherwise, they are excluded from current
stage’s consideration. The decentralized algorithm involves
two roles: a virtual merchant is randomly selected who is
then responsible for operations during the current stage, and
customers are formed from robots still looking to be assigned
tasks. Each customer keeps listening to the merchant’s mes-
sages, including price increment information, new items in Ť ,
and the alternate choice transfer operations.

Algorithm VI.1 Customer[i]
1: initiate Ť := ∅, Ω(i) := ∅
2: . upon receiving price increment δ
3: update profit margins mij , ∀j ∈ Ť
4: if new alternate choice ta ∈ T \ Ť exists then
5: Ω(i) := Ω(i) ∪ {ta}
6: send newly exploited ta to merchant of current stage
7: . upon receiving updated Ť :
8: j

′
:= argmaxj∈T\Ť {uij − pj}

9: vi − wi := (uiϕ(i) − pϕ(i))− (uij
′ − pj′ )

10: submit bid vi − wi to merchant
11: . upon receiving assignment ϕ(i)
12: update assignment (the preferred choice and an alternate choice

swaps)
13: select a conflicting customer as new merchant, go to next stage

Algorithm VI.2 Merchant
1: initiate: Ť := {ϕ(i)}, send Ť to associated conflicting cus-

tomers i ∈ Ř
2: . upon recv. newly exploited ta from customer i

3: ξ(ta) := i
4: if ta is still conflicting with preferred customers, say, H then
5: Ť := Ť ∪ {ta}, Ř := Ř ∪H
6: send Ť to customers i ∈ Ř
7: else
8: sink := ta, query Ω(i) from customers i ∈ Ř
9: compute new assignment among Ř with alternate choice

records of Ω and ξ
10: broadcast assignment result ϕ(i) to customers i ∈ Ř
11: . upon receiving bids vi − wi from i ∈ Ř
12: minimal price increment δ := mini∈Ř{vi − wi}
13: broadcast δ to customers i ∈ Ř

After receiving this information, computations are per-
formed locally and the results sent to the merchant. The
merchant listens to the information from customers, including
the newly discovered alternate choices, choice margin infor-
mation, and information for updating the customers involved.
High-level pseudo-code for the customers and merchant roles
are given in Algorithms VI.1 and VI.2, respectively. Detailed
computations are analogous to the centralized version.

VII. EXPERIMENTS

Besides the experimental results shown in Bertsekas’ orig-
inal papers, reported results on the AUCTION algorithm’s
performance are surprisingly limited. We implemented all
aforementioned algorithms in C++, and ran the experiments on
a Thinkpad laptop with 1.60GHz CPU and 2GB of memory.
All results are obtained from data of 50 trials.

A. Performance as a Centralized Algorithm
Since the proposed algorithm has a strongly polynomial

time complexity and can be used as an optimal assignment
algorithm in a centralized fashion, we compared it with the
Hungarian method (the classical benchmark), the AUCTION
algorithm, and our previous task swap-based method (another
distributable optimal algorithm [18] with time complexity of
O(n3lgn) but not using any market-based notions).
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Fig. 3. Practical running times for the AUCTION algorithm.

We first tested the AUCTION algorithm in a variety of
settings, and the results highlight its extreme sensitivity to
the input data. Fig. 3 shows the running times under different
sized matrices and randomized data from different ranges (i.e.,
[0,Max]). From Fig. 3(a) to Fig. 3(d) we can see an improve-
ment in running times of the AUCTION algorithm, indicating
that the algorithm works the best when data are scattered with
larger differences (as this produces larger bidding margins).
Table I is a detailed comparison of the AUCTION algorithm and
our method for randomly generated values in [0, 103], which
reveals obvious advantages of the proposed algorithm (both in
terms of the mean time and the standard deviations).

TABLE I
RUNNING TIME PERFORMANCE: STATISTICS

Matrix size 200 400 600 800

AUCTION

Average 0.4362 5.4619 14.615 32.868
Std. Dev. 0.6745 4.6023 10.055 27.529
Maximum 2.3801 16.401 38.336 105.37
Minimum 0.0517 0.2885 0.4599 12.300

Our algo.

Average 0.0862 0.3956 1.0907 1.9998
Std. Dev. 0.0243 0.0907 0.2184 0.3597
Maximum 0.1730 0.5658 1.7649 2.6351
Minimum 0.0638 0.1981 0.7942 1.3584

Fig. 4 summarizes results of the difference between the
proposed algorithm and other popular methods mentioned
in this paper. Compared with the benchmark (centralized)
Hungarian algorithm, our algorithm is slightly inferior, but
much faster than both the AUCTION algorithm and the swap-
based method. The AUCTION algorithm performs the worst
among the four. Note that, the swap-based method [18] has
a time complexity of O(n3lgn) which is the same as this
proposed algorithm, however, this presented algorithm seems
to perform much better in practice. This may imply that,
although our approach has a worst case of O(n3lgn), the
actual amortized time complexity could be Θ(n3). (In our
algorithm, for both the centralized and decentralized versions,
only a partial matrix need be dynamically computed per round;
costly “ranking” data structures are created only as needed.)

Fig. 4. A comparison of running times. (Standard deviations for AUCTION
algorithm are large and thus omitted.)

(a) (b)
Fig. 5. (a) The number of price adjustments in our algorithm compared
with bids in the AUCTION algorithm; (b) An example showing the number of
involved robots along the evolution of stages.

B. Performance as a Decentralized Method
We have shown in Section VI that our method is as naturally

distributable as AUCTION. Here we compare the method in de-
tail with two other distributable optimal algorithms: AUCTION
and the task swap-based method.

We compared our algorithm and the AUCTION method by
investigating the total number of price escalations. This is
because each price escalation represents one auction operation
in the AUCTION algorithm or one market adjustment in our
market-based method. The results, shown in Fig. 5(a), show
that the proposed algorithm requires far fewer such steps, sug-
gesting a great reduction in communication. We also compared
the total number of stages (each stage requires an auctioneer
or a merchant) between the two methods. With 100 agents, the
results shows that our method needs on average only 40 stages,
whereas the AUCTION algorithm requires almost 2000 stages
to complete. This implies that our algorithm has eliminated the
notoriously long iterations inherent in the AUCTION algorithm.
Fig. 5(b) is a typical example (matrix size 100×100) showing
the evolution of the stages, along with the number of robots
involved in each.

We also compared this algorithm with the recent swap-based
method, which approaches the optima by searching for a series
of task exchanges between robots. First we investigated the
total number of stages required for completion. Fig. 6(a) shows
that both methods need very similar numbers of stages, and
that the swap-based method generally performs slightly better.
We then compared the average number of agents involved
in each stage, which reflects the amount of communication.
Fig. 6(b) shows that the proposed method always requires
fewer agents to be involved. When the number of agents is
large, the superiority is clear (for a size of 100, this algorithm
involves only half number of that of the swap-based method).
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Fig. 6. (a) Total number of stages required; (b) Average number of involved
agents in each stage.

VIII. DISCUSSIONS AND FUTURE WORK

There are several other things worth mentioning:
(1) The proposed algorithm works for unbalanced robots and
tasks (#tasks > #robots, otherwise utility matrix needs to
be transposed). The algorithm terminates when all conflicted
customers have been resolved, and available articles are chosen
in a greedy manner so that optimality is always guaranteed.
This feature is also important since if a robot has failed, it can
be simply removed from the current market, and the individual
failure does not undermine the whole system;
(2) Conflicts can also be resolved concurrently. This means
that every conflicted article can initiate a resolution in a
decentralized fashion. However, if a robot is subsequently
involved in multiple conflicts, later ones have to pause and
wait until the earliest one is resolved and the preferred article’s
price has been escalated (this may change the robot’s status
in other conflict involvements though).

We are also interested in investigating the proposed market-
based mechanism further in future work. We believe the major
contribution of this work lies in the evidence that a market-
based mechanism is capable of reaching the global optimum in
a distributed manner with limited number of steps. However,
resolving assignment ties require successful communication,
which might be a potentially problematic assumption for
some robotic scenarios. (The review of literature in Section II
illustrates how challenging it is to reach the global optima
if each robot can obtain only local information.) Therefore,
one direction is embedding this new mechanism in other
popular auction/market-based methods (e.g., by modifying or
re-designing their bidding or pricing policies) to improve their
solution quality even if optimality need be sacrificed.

IX. CONCLUSIONS

Like the AUCTION algorithm, which one can regard as a
procedure by which bidders with overlapping buying interests
resolve their conflicts, we introduce an algorithm that can
be regarded as analogous to the process of selecting pricing
polices to alter purchasing behavior to clear all inventory. To
summarize, the novel algorithm has several attractive features:
i.) Simple primitives and optimality: The technique has an in-
tuitive interpretation which is inherently distributed and leads
naturally to a decentralized implementation. Unlike most other
market-based methods, global optimality can be achieved.
ii.) Strongly polynomial time complexity: This is an advantage
over the classic optimal and distributable AUCTION algorithm,

as well as existing decentralized market-based algorithms.
Sensitivity to input values is also eliminated.
iii.) Distributed computation and communication: Even in
computing the global optimum, typically only a small subset
of robots are found to be involved. The decentralized variant
of the algorithm require no single privileged global controller.

This new task allocation mechanism has potential to lead to
improvements in numerous existing sub-optimal market-based
approaches too.
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