SENSOR SELECTION FOR FINE-GRAINED BEHAVIOR VERIFICATION THAT RESPECTS PRIVACY Rishi Phatak and Dylan A. Shell Hardness results

Texas A&M University • With privacy (negative) constraints added, it is

What is a sensor selection?

- Given a claim made by an agent in an environment, how do we verify it?
- Place sensors throughout the environment
- Which sensors do we select \Rightarrow the sensor selection problem
- Rahmani et al.¹ showed that minimum sensor selection is **NP-Hard**

Modeling the problem

- A world graph is an edge-labelled, directed multigraph
- Each edge on the world graph has a label associated with it
- Any walk taken on the world graph leads to a so-called "signature" with the caveat that edges with empty labels don't produce a symbol
- Itinerary: A set of walks described by a DFA or regular expression

What about privacy?

- Information collected could be considered private, or sensitive
- Specify many itineraries with 2 types of constraints:
- Positive: 2 itineraries, each of which must not be confused with the other
- Negative: 2 itineraries, one of which must appear identical to the other
- Constraints taken together form the desired discernment (DD) graph
- Positive constraints undirected edges
- Negative constraints directed edges

Decision Problem: Minimal sensor selection to accommodate a discernment designation in itineraries (MSSADDI)

Input: A world graph G, a discernment designation D, and a natural number $k \in N$. **Output:** A satisfying sensor selection $M \subseteq S$ for D on G with $|M| \le k$, or 'INFEASIBLE' if none exist.

Satisfying Sensor Selections

- For each (undirected) pair of itineraries in discrimination \Rightarrow no walks should have the same signature
- For each (directed) pair of itineraries in conflation \Rightarrow for each walk from the first itinerary there must be a walk in the second itinerary having the same signature

Observations

- Adding privacy may increase the number of sensors required to satisfy all constraints
- Merely minimizing selected sensor on discrimination requirements does not guarantee specific privacy

Implications for finding solutions

Active sensors

 $= \{o_f, o_b\}$

signatures for ending

in kitchen

- Adding privacy constraints makes the sensor selection problem significantly harder!
- Thus, we understand that
- Adding more discrimination requirements between itineraries is still NP-Hard
- However, even one conflation requirement raises the complexity to PSPACE-Hard
- If $P \neq PSPACE$, then our ability to solve large instances of this problem is impaired.

Optimizations

- On the complete enumeration of sensor sets, we can cache signature automata or apply adaptive weights on constraints
- Adaptive weights led to a 87% improvement in time.