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Abstract— We wish to minimize the information that a robot
maintains to carry out its task. Filters are one way to keep
stored state consistent with sensed values, though they may
also capture some information about the structure of the
world that the robot inhabits. This paper builds on prior
work on (improper) filter minimization, but considers a new
way to characterize structure in the world. By introducing
a probabilistic model, one can define a notion of expected
distance between two filters. Then, with such a measure, we
pose the question of optimal lossy compression in the sense of
having minimal expected distance. The problem retains the NP-
hardness of the non-probabilistic worst-case minimization and,
consequently, in this paper we focus on developing an effective
heuristic algorithm. Our results illustrate that, in settings where
the probabilities describe evolution of the world’s state, the
algorithm can do substantially better than existing worst-case
minimization techniques oblivious to such structure.

I. INTRODUCTION

Filters are part of the standard estimation machinery used

by robots to aggregate, fuse, or otherwise process sensor

data. Their outputs are typically used for decision-making.

Combinatorial filters [9]—essentially discrete, finite labelled

transition systems—are a subclass of filters of practical and

theoretical interest. One line of recent research has explored

algorithms that operate on combinatorial filters [11]–[13].

That is to say, these algorithms take descriptions of filters as

inputs and perform a series operations thereupon to produce a

variety of outputs, including new filters. This pattern of using

software to mutate parts of robot controllers is promising in

that it provides an abstract basis for tools to aid roboticists

in making design-time decisions.

The present paper continues this line of research, address-

ing the filter minimization (FM) problem:

Given a combinatorial filter which exhibits some

behavior, find the smallest filter that is equivalent.

This is a reasonable subject to examine because, unlike, say,

a Kalman filter where the space complexity of an implemen-

tation is O(1) for a given state-space dimensionality, com-

binatorial filters can be large—so their practicality in certain

settings may hinge on the achievement of such reductions.

While the measure of ‘size’ for such filters is natural, the

most useful notion of ‘equivalence’ is, however, far from

unequivocally settled. Our work departs from prior results

primarily in that we explore a new notion of equivalence

between two filters.
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Fig. 1: An illustrative example: (a) A line-following robot’s con-
troller is expressed as a combinatorial filter which distinguishes
between sharp and soft turns, the latter being used to fine-tune
the gross motions of the former. (b) A filter with only four states
output from the reduction techniques in [13]. (c) Since most reflex
angles in the environment are ∼270◦, a clockwise tracing results
in left turns that are structured. (d) A distribution over filter inputs
describing such structure leads to the probabilistic reduction result
shown. This filter makes fewer errors, in expectation, than that in
(b) for the class of scenarios of which (c) is an exemplar.

Filter reduction was first studied in [11], where the prob-

lem of optimally minimizing a filter to produce one exactly

indistinguishable on all inputs, but of smallest size, was

shown to be NP-hard. This result is somewhat surprising, as

the problem superficially resembles the classic minimization

problem for finite automata solved by Myhill and Nerode [5,

pp. 65ff.]. The subsequent work in [13] examined a relax-

ation of this problem termed improper filter reduction in

which the equivalence relation on two filters tolerates some

mismatches, as expressed by a metric (like the Hamming

distance) on strings. But this relaxation turns out to be NP-

hard also, and remains so even to approximate.

In this paper we enrich prior models, adding a probability

distribution over observations, in order to better express real-

world settings. Doing so leads to the analogous problems

of probabilistic improper reduction and minimization. Our

experimental results show that the additional complication

introduced by the probability distribution adds only moder-

ately to the running-time of a heuristic algorithm because a

new form of lazy evaluation becomes feasible—though the

fundamental hardness concerned remains, of course.

The simple example in Fig. 1 illustrates how probabilistic

models manifest themselves in the context of practical im-



proper filter reduction. A robot is tasked with following a

line using its floor-facing sensors (see Fig. 1a). Its designer

has solved this problem by having turning motions of two

varieties: those that make quick large adjustments (hard left

and hard right) and those for finer corrections. If one seeks a

controller with fewer than five states, the reduction must be

improper because we start with five different actions and one

must therefore be lost. The question is which one should be

discarded? The merger that produces Fig. 1b represents the

previous state-of-the-art, wherein the set of input sequences

received by the filter (here over E, L, and R) is the domain

over which one optimizes to answer the question. When there

is additional structure, as is often the case, then one can

do better. The environment in Fig. 1c provides one (toy)

example: a robot designer, knowing that the robot will inhabit

structured environments where left-turns seldom need fine

correction, can produce a better four-state filter using the

techniques in this paper (see Fig. 1d for such a result).

The contributions of this paper are (i) formulation of the

problem of improper filter reduction in probabilistic worlds,

along with the introduction of a measure of distance between

two filters modulo some probabilistic model; (ii) proof that

optimal solution of such problems is NP-Hard; and (iii) the

presentation and analysis of a practical algorithm which,

though not always optimal, performs well in practice.

The remainder of this paper is organized along these lines:

after discussing related work, we formalize the problem and

demonstrate its hardness (Section III), describe a heuristic

algorithm for that problem (Section IV), and present some

experimental results from an implementation of this algo-

rithm (Section V). The paper concludes with a summary of

the results and some discussion of future work (Section VI).

II. RELATED WORK

Tracking information about uncertainty in graphs with a

combinatorial (or power-set) flavor grew first out of research

on manipulation tasks [2], [3]. The term combinatorial filters,

as we use it to describe discrete estimators, was introduced

by LaValle in his more general formulation of the idea of

information spaces [8], [9]. Several papers make use of com-

binatorial filters to reason about the information needed to

solve a task, often for simple or minimal robots [15]. Recent

years have seen the approach used for diverse applications,

including manipulation [6], exploration [7], target tracking

[1], [21], navigation [10], [18], validation [19], [20] and some

inference tasks on passive combinatorial filters [16], [17]. In

a generalization of standard filters, Song and O’Kane [14]

consider problems on infinite information spaces.

Discrete filters are interesting because, in addition to being

useful to fuse sensor readings directly on-board a robot, they

can be used as descriptions (or as specifications) of behavior

that are amenable to automated processing. For example, this

paper describes an algorithm that mutates a filter given as its

input. This view of filters as structured representations was

articulated in some detail in [11], which also considered the

problem we tackle: that of filter reduction. In light of the

hardness result proven in that paper, the recent work of [13]

explored the notion of improper reduction—informally, the

idea that is willing to tolerate a few errors for a smaller

filter—which is extended in this paper. The same authors,

and again recently [12], also examined several special-cases

of filters and reduction problems, finding that even quite

structured instances (e.g., such as filters with a tree form)

remain hard to minimize.

As this work extends [13], later sections will elaborate

more fully on the relationship of that work to, and precise

nature of the extension in, the algorithms developed herein.

III. DEFINITIONS AND PROBLEM FORMULATION

This section provides basic definitions and introduces the

algorithmic problem we address. We define combinatorial fil-

ters and their languages, and then introduce the probabilistic

improper filter reduction problem.

A. Combinatorial filters and their languages

Definition 1: A filter F = (Q,E, ℓ, c, q0) is a directed

graph in which

1) the set Q includes the vertices of this graph, called the

states of the filter,

2) the multiset E includes the edges, called the transitions

of the filter,

3) the function ℓ : E → Y assigns to each edge a

label called an observation, which is drawn from the

codomain called the observation space Y , so that no

two edges with the same origin share the same label,

4) the coloring function c : E → N assigns a natural

number called the color to each state, and

5) the initial state is denoted q0.

The idea is that a filter processes a sequence of observa-

tions, starting at state q0 and transitioning along the edge

labeled with each successive observation in the sequence. At

each state visited in this process, the filter produces as output

the color of that state.

For a given observation sequence s = y1 . . . ym, we write

F (s, q) to mean the output produced by F when processing

s starting from a given state q, if all of the corresponding

edges exist. At the initial state q0, we use the shorthand F (s)
to refer to F (s, q0).

Note that some states may be ‘missing’ edges, in the sense

that there may be some state-observation pairs (q, y) ,for

which q has no out-edge labeled with y. The interpretation

is that, based on the structure of the system being modelled,

it is known that observation y will not occur when the filter is

in state q. For an observation sequence s that might attempt

to cross such an edge starting from a state q, we say that s
is invalid on F from q, and that F (s, q) is not defined.

Definition 2: For a given filter F and a given state q, the

set of strings processed by F from q is defined as

S(F, q) = {s ∈ Y ⋆ | F (s, q) is defined } .

In the particular case of the initial state q0, we write

L(F ) = S(F, q0),

which we call the language of filter F .



B. The environment model

Our goal is reduce the representation size of a filter while

ensuring that the expected difference in outputs between the

original and reduced filters remains small. For this notion of

expected distance to be well-defined, the input must include

a probability distribution over input observation sequences.

We define this distribution in terms of a finite state transition

system, in the spirit of a Markov chain.

Definition 3: A probabilistic model P = (V,Ep, ℓp, v0) is

a directed graph in which,

1) the set V includes vertices called the states of the

model,

2) the multiset Ep consists of edges, called transitions,

3) the function ℓp : Ep → Y × [0, 1] assigns to each edge

a label, consisting of an observation and a probability,

4) the initial state is denoted v0,

and for every state that has at least one out-edge, the sum

of probability labels is 1.

Note that a probability model is analogous to a filter, except

that (a) we attach a probability to each edge, and (b) there

are no assigned colors for each state.

This kind of model defines a probability distribution over

observation sequences in the following way: For a given

observation sequence s = y1y2 . . . yn, one can begin at

the initial state and trace the edges corresponding to the

observations, in order. The product of the probabilities of

these edges gives the probability that, after n outputs, the

observation sequence will have been s; we write P (s) for

this probability.

As with filters, in the probability model we do not require

an out-edge from each state labeled with each observation.

For an observation sequence s that would need to traverse

such a missing edge, we define P (s) = 0.

C. Defining distance between filters

Before defining the distance metric between pairs of filters,

we first consider the difference between pairs of strings.

We will be handling sets of strings, some of which may

contain strings of arbitrary length. Recognizing the finiteness

of any real system owing to fallibility inherent in physical

artifacts, we propose to model the likelihood of termination

with an exponential factor, for which we adopt the standard

term of discount factor and use the common symbol γ.

This parameter captures, after each step, the (hopefully

small) constant independent chance of cessation of the entire

process. Now we may define of the discounted Hamming

distance of two observation sequences s and s′.

Definition 4: The discounted Hamming distance, denoted

hγ(s, s′), between two observation sequences, both of

length m, s = y1 . . . ym and s′ = y′1 . . . y
′

m, is

hγ(s, s′) =

m∑

i=1

γi · [yi 6= y′i], (1)

in which γ ∈ (0, 1) is the discount factor and [·] is the

indicator function evaluating to 1 if the given proposition is

true and 0 otherwise.
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Fig. 2: An example in which the environment structure described by
a probabilistic model enables a filter to be reduced effectively. [top]
A probabilistic world model consisting of two equal-length cycles,
one much more likely to be traversed than the other. [middle] A
filter specifying an inference task in which the goal is to determine
which of the two cycles is being traversed. [bottom] A reduction
of this filter that merges the less likely of the cycles into the more
likely one. This reduction is improper, in the sense that this reduced
filter cannot guarantee to produce the same outputs as the original,
but the expected error remains small.

Next, suppose we are given two filters F1 and F2 with the

same observation space Y , along with a probabilistic model

P . We define a metric to measure the distance between F1

and F2, based on the expected discounted Hamming distance,

with discount factor γ, and with the expectation computed

over the probabilistic model P . We denote this distance

Dh(F1, F2, P, γ).

Definition 5: The expected discounted Hamming distance

between two filters F1 and F2 with respect to the probability

model P is defined as:

Dh(F1, F2, P, γ) =
∑

s∈L(F1)∩L(F2)

P (s) hγ(F1(s), F2(s)). (2)

Fig. 2 shows a simple example that illustrates the value of

minimization using expected, rather than worst case, error.

D. Probabilistic improper filter reduction

The formal problem is thus:

Problem: Probabilistic-Improper-FM

Input: A filter F , a probabilistic model P , a

discounting factor γ, and an integer k.

Output: A filter F ′ with at most k states, such

that L(F ) ⊆ L(F ′) and Dh(F, F
′, P, γ)

is minimal.

We now show that solutions to this problem that are both

efficient and optimal are unlikely.

Theorem 1: PROBABILISTIC-IMPROPER-FM is NP-hard.

Proof: Reduction from the original filter minimization

problem, FM [11], which is identical to PROBABILISTIC-

FILTER-FM, with two important distinctions: First, FM

seeks a reduced filter whose behavior is identical to the input



filter, rather than one that merely minimizes the distance.

Second, FM is a decision problem, asking whether a reduced

filter exists at the given size k, a technical necessity for it to

be in NP-complete.

Suppose a polynomial time algorithm for

PROBABILISTIC-IMPROPER-FM exists. Then, given an

instance (F1, k) of FM, one can form a probabilistic model

P with the same states and edges, and with arbitrary non-

zero summing-to-one probabilities assigned to the edges.

Using this P , along with the algorithm whose existence

we have supposed we can efficiently find the filter F2

with size k that minimizes D(F1, F2, P, γ). Observe that

Dh(F1, F2, P, γ) = 0 if and only if, for any observation

sequence s for which P (s) > 0, we have identical outputs

F1(s) = F2(s). Therefore, F1 can be reduced to size k if

and only if Dh(F1, F2, P, γ) = 0.

Since FM is NP-complete, and we have a polynomial-

time reduction from FM to PROBABILISTIC-IMPROPER-

FM, we conclude that PROBABILISTIC-IMPROPER-FM is

NP-hard. �

Consequently, we restrict our attention to heuristic algo-

rithms that attempt, but cannot guarantee, to minimize the

distance between the reduced filter and the original.

IV. ALGORITHM DESCRIPTION

This section outlines a heuristic algorithm for probabilistic

improper filter reduction. The presentation has three phases.

First, in Section IV-A, we address the general problem of

computing the distance between two filters F1 and F2 with

respect to a probabilistic model P and discount factor γ,

i.e., Dh(F1, F2, P, γ), by providing a dynamic programming

recurrence whose values converge to this distance. Then,

in Section IV-B, we show this recurrence can be used to

efficiently bound, both from above and from below, the

distance between a pair of filters in only a few iterations

of dynamic programming. Lastly, in Section IV-C, we show

how the resulting bounds can be used within the existing

greedy sequential algorithm for improper filter reduction to

determine which of two candidates is the closest to the

original filter by operating lazily so that just enough iterations

to accurately identify the best candidate are used.

A. Discounted Hamming distance metric

In this section, we derive a recurrence for the distance

Dh(F1, F2, P, γ) between two filters F1 and F2 with respect

to a probability model P . To do so, we allow both the

observation string length and the starting states to vary.

Definition 6: Let dh(q1, q2, v, k), in which q1 is a state

in F1, q2 is a state in F2, and v is a state in P , denote the

expected discounted Hamming distance, over all observation

sequences s of length k in L(F1, q1)∩L(F2, q2) with respect

to the probability model P starting at state v. If there are no

such observation strings, dh(q1, q2, v, k) is defined to be 0.

Now we describe how to compute dh via a recurrence on

the observation string length k. When k = 0, the observation

string is empty, leading to a single output. In this case we

need only check whether the two states have same color:

dh(q1, q2, v, 0) = [c1(q1) 6= c2(q2)]. (3)

In the general case with k > 0, we consider the set

of common observations for q1, q2, and v—that is, the

observations for which all three states have out-edges—

denoted Y (q1, q2, v). For each observation y ∈ Y (q1, q2, v),

there exist edges q1
y

−→ q′1 in F1, q2
y

−→ q′2 in F2, and

v
(y,py)
−→ v′ in P , all labeled with the same observation y.

This allows us to express the expected discounted Hamming

distance recursively:

dh(q1, q2, v, k) = [c1(q1) = c(q2)]+∑

y∈Y (q1,q2,v)

pyγ dh(q
′

1, q
′

2, v
′, k − 1). (4)

The idea is to directly compute the contribution to the overall

distance from the first stage, and combine this value with the

remaining distance, appropriately weighted according to P
and discounted according to γ. Given dh values for each state

triple at a particular observation string length k− 1, we can

use (4) to compute dh at for observation strings of length k.

In the particular the case when Y (q1, q2, v) = ∅, we follow

the standard convention of treating the vacuous sum as 0.

B. Using d to bound D

We can now establish a connection between dh and D.

Lemma 2: Consider two filters F1 and F2 along with a

probabilistic model P . Let q
(1)
0 , q

(2)
0 , and v0 denote the

respective initial states of these graphs. Then for any positive

integer k,

dh(q
(1)
0 , q

(2)
0 , v0, k) ≤ Dh(F1, F2, P, γ), (5)

and

Dh(F1, F2, P, γ) ≤ dh(q
(1)
0 , q

(2)
0 , v0, k) +

γk+1

1− γ
. (6)

Proof: For (5), the lower bound, observe that in the best

case, F1 and F2 may produce the same colors at every

stage beyond stage k, for every string in L(F1) ∩ L(F2)
accumulating no additional error. Likewise, for the upper

bound (6), we appeal to a worst case in which F1 and F2

disagree at every position beyond stage k. Thus—recalling

that 0 < γ < 1 implies that the series converges—the

additional error, as the observation strings grow longer, is

bounded by

∞∑

i=k+1

γi =

∞∑

i=0

γi −

k∑

i=0

γi

=
1

1− γ
−

1− γk+1

1− γ

=
γk+1

1− γ
.

�



Corollary 1: For any filters F1 and F2 and probabilistic

model P , Dh(F1, F2, P, γ) = limk→∞ dh(q
(1)
0 , q

(2)
0 , v0, k).

Proof: Follows from Lemma 2, the definition of the limit,

and the convergence of γk+1/(1− γ) to 0 as k → ∞. �

C. Lazy greedy sequential reduction

Prior research by some of the present authors [13] in-

troduced the problem of improper filter reduction using

worst-case, rather than probabilistic, reasoning. That work

introduced an approach called local greedy sequential (LGS)

reduction that works by iteratively reducing the size of the

original filter, one state at a time, until the desired size is

reached. This algorithm choose the best candidate to merge

in each iteration for reducing one state. In this section,

we adapt that general approach for the current probabilistic

setting. The bounds from Lemma 2 enable dynamic program-

ming that does not need to compute the distance between

each candidate solution to any great precision. This form

of ‘laziness’ was not feasible in the original worst-case,

undiscounted version of the algorithm.

Algorithm 1 shows the lazy greedy sequential algorithm

for Probabilistic-Improper-FM. The idea is to form smaller

filters by way of a MERGE operation that combines a pair of

states, much like a vertex contraction operation but with an

additional step performed afterwards. This post-processing

step ensures that the language of the merged filter contains

the language of the original and is achieved via the addition

of extra edges. Fig. 3 provides an example: a forward search

discovers any observations that are missing and introduces an

appropriate edge for each one. Utilizing this merge operation,

the algorithm considers all state pairs as candidates for

merger. It selects the merged filter whose distance from the

original input is the smallest, preferring merges that do not

leave any states unreachable, if any such merges exist.

The heart of Algorithm 1 is its call to the subroutine

Algorithm 1: LAZYGREEDYIMPROPER(F, P, γ, k)

f ← False
Forig ← F
while |V (F )| > k do

F ⋆ ← ∅

for (q1, q2) ∈ V (F )× V (F ) do
if q1 = q2 then

continue

F ′ ← MERGE(F, q1, q2)

if (not f ) and F ′ has unreachable states then
continue

if F ⋆ = ∅ then

F ⋆ ← F ′

else

F ⋆ ← BESTCANDIDATE(Forig, F
⋆, F ′)

if F ⋆ = ∅ then
f ← True

else
f ← False
F ← F ⋆

return F

Algorithm 2: BESTCANDIDATE(Forig, F1, F2, P, γ)

while True do

if F2.D > F1.D then
return F1

if F1.D > F2.D then
return F2

if F1.D ≈ F1.D ≈ F2.D ≈ F2.D then
return F1

if F1.k < F2.k then
IMPROVEBOUNDS(Forig, F1, P, γ)

else
IMPROVEBOUNDS(Forig, F2, P, γ)

Algorithm 3: IMPROVEBOUNDS(Forig, F, P, γ)

F.k ← F.k + 1
Q← (q0(F ), q0(Forig), v0(P ))
while Q in not empty do

(q1, q2, v)← Q.get()
Compute dh(q1, q2, v, F.k) using Eq. 3 or Eq. 4

for each out-going edge q1
y
−→ q′1 in Forig do

if q2 ∈ F has an out-going edge q2
y
−→ q′2 then

if v ∈ P has an out-going edge v
y,p
−→ v′ and

(q′1, q
′

2, v
′) has not visited before in Q then

Q← (q′1, q
′

2, v
′)

F.D ← dh(q0(F ), q0(Forig), v0(P ), F.k)

F.D ← dh(q0(F ), q0(Forig), v0(P ), F.k) + γk+1/(1− γ)

BESTCANDIDATE, whose job is to determine whether the

newly-created candidate F ′ is closer to the original filter Forig

than the current best known candidate F ⋆ (see Algorithm 2).

BESTCANDIDATE maintains, for each of the two candidate

filters, the largest k for which dh has been computed for that

filter. This k, along with the dh table giving distances from

Forig and the upper and lower bounds from Lemma 2 denoted

D and D respectively, are stored as attributes of each filter.

If there is a clear separation between the two candidate

filters, that is, if the lower bound for one of the filters

exceeds the upper bound for the other, BESTCANDIDATE can

terminate. If not, the algorithm then performs an additional

iteration of dynamic programming on one of the filters—

specifically, the one whose k value is the smallest, because

q1 q2
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y0 y1

y3 y4
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Fig. 3: An example of MERGE(F, q1, q2), and the post-processing
it performs to ensure that L(F ) ⊆ L(F ′). (a) A filter F , before
merging q1 and q2. (b) An intermediate filter generated by merging
q1 with q2. Here, F can process the observation sequence y1y2y4,
but the intermediate filter fails on this input. (c) Post-processing
inserts an edge, found by searching forward, to obtain F ′.
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Fig. 4: [top] A robot determining whether it is in the center of its
environment. [bottom left] A probabilistic model with a uniform
distribution observation strings, which we call UNIFORM; [bottom
right] A probabilistic model biased toward movement back to the
center, which we call CENTER.

earlier iterations have greater impact on the bounds—and

repeats. This process continues until one of the two candi-

dates is clearly determined to be closer to Forig, or until the

bounds are sufficiently close that the difference between the

two candidates is now known to be negligible.

This process—generation of candidates by merging pairs

of states and selection of the best candidate using lazy

dynamic programming—continues until the filter is reduced

to the desired size.

V. EXPERIMENTS

We implemented Algorithms 1–3 in Python. This section

reports the performance an example problem: We executed

Algorithm 1 on a filter constructed for the problem shown in

the top portion of Fig. 4. The input filter represents an agent

moving in an environment with two basic actions move left

and move right. At the end states 5 and −5, the agent en-

counters the walls of environment and further actions in those

directions have no effect. The probabilistic models in Fig. 4

represent two different distributions on the observations. The

first model shows a uniform distribution (called UNIFORM

hereafter); the second represents a distribution in which the

agent moves toward the center with probability proportional

to the distance from the center (called CENTER).

We reduced this basic filter from size 11 down to each

target size k ∈ {10, . . . , 2}. For each size, we ran Algo-

rithm 1 using each of the probabilistic models in Fig. 4,

using γ = 0.95 throughout. For comparison, we attempted

the same reductions using the original LGS reduction algo-

rithm [13], which uses worst-case, rather than probabilistic

reasoning. For each of these runs, across both algorithms,

we computed the expected discounted Hamming distance of

the output filter from the original input filter. The results are

shown in Table I and Table II.

A. A comparison of output quality

Table I reports expected discounted Hamming distance

of the output filters based on the CENTER and UNIFORM

probabilistic models. With the former model, the differences

between the two algorithms are less pronounced than the

latter. This is indicative of the fact that Algorithm 1 is able

to exploit the structure in the CENTER model; this structure

is absent in the UNIFORM model. As a specific example,

when k = 3 with the CENTER model, Algorithm 1 has

QUALITY

Probabilistic Model k Algorithm 1 LGS [13]

CENTER 2 7.805 7.805
CENTER 3 0.575 6.773
CENTER 4 0.331 3.501
CENTER 5 0.331 0.297
CENTER 6 0.212 0.278
CENTER 7 0.095 1.717
CENTER 8 0.034 1.705
CENTER 9 0.018 0.146
CENTER 10 0.006 0.142

UNIFORM 2 2.964 6.688
UNIFORM 3 2.082 4.010
UNIFORM 4 1.841 2.121
UNIFORM 5 1.670 1.259
UNIFORM 6 1.198 1.038
UNIFORM 7 0.685 0.819
UNIFORM 8 0.495 0.565
UNIFORM 9 0.276 0.328
UNIFORM 10 0.148 0.177

TABLE I: The expected discounted Hamming distance for two
algorithms under the CENTER and UNIFORM probabilistic models.

an error of 0.575, while LGS achieves a value of 6.773,

a factor of more than 10. For the same target size with the

UNIFORM model, Algorithm 1 has an error of 2.082, while

LGS produces 4.010, a more modest factor of 2.

In both CENTER and UNIFORM models, there are some

values of k where changing the parameter causes no change

in quality. This is explained by looking at the filters actually

produced by the algorithms: for example, see Fig. 5, where

as k increases from k = 3 to k = 4, we see that the filter

outputs (i.e., colors) are indistinguishable.

The results show generally better performance for the new

algorithm, especially when the amount of reduction is small.
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Fig. 5: The reduced filters of the input filter in Fig. 4 along with
CENTER model to size (a) k = 2 with 7.805 error, (b) k = 3 with
0.575 error, (c) k = 4 with 0.331 error and (d) k = 5 with 0.331
error. The change from (c) to (d) does not affect the error as they
always output the same colors.

B. Comparative efficiency

Table II shows the run times of these algorithms on a

single core of a 3.1GHz processor. The data show that

Algorithm 1 is slower than LGS [13]. Some of this difference

can be attributed to the extra computation required to account

for the various states in the probabilistic model, manifest in

the need to consider state triples, rather than merely state

pairs, in Algorithm 3. The difference is more pronounced for

the CENTER model, owing to the greater number of states for

that model.



COMPUTATION REQUIRED

Probabilistic Model k Algorithm 1 LGS [13]

CENTER 2 2.293 s 0.176 s

CENTER 3 2.294 s 0.152 s

CENTER 4 2.265 s 0.152 s

CENTER 5 2.157 s 0.145 s

CENTER 6 1.929 s 0.139 s

CENTER 7 1.649 s 0.122 s

CENTER 8 1.296 s 0.101 s

CENTER 9 0.898 s 0.081 s

CENTER 10 0.477 s 0.047 s

UNIFORM 2 2.048 s 0.156 s

UNIFORM 3 2.059 s 0.152 s

UNIFORM 4 1.940 s 0.151 s

UNIFORM 5 1.854 s 0.146 s

UNIFORM 6 1.590 s 0.137 s

UNIFORM 7 1.420 s 0.121 s

UNIFORM 8 1.136 s 0.102 s

UNIFORM 9 0.797 s 0.081 s

UNIFORM 10 0.359 s 0.047 s

TABLE II: The run time of two algorithms with the CENTER and
UNIFORM probabilistic models.

VI. CONCLUSION

This paper is concerned with reducing the information

needed for a robot to perform its tasks effectively. Toward

this end, we have generalized a previous notion of distance

between two combinatorial filters by including a probability

distribution over the inputs that provides a way of express-

ing structure of the world as it manifests itself through

observations. This allows one to construct filters that are

smaller because, though they make some mistakes (i.e., are

improper reductions), those mistakes have a low likelihood of

occurrence. As is widely recognized, average-case analysis

of algorithms is typically more meaningful than worst-case

bounds when a distribution over the inputs is available. The

present work provides an analogous distinction for particular

filter reduction instances, contributing a new algorithm for

reducing the size of a discrete filter via minimization of an

expected distance. Prior to the formulation in this paper, no

such expectation existed with well-defined form.

A separate advantage of a probability distribution over fil-

ter inputs is that algorithms may use computational resources

wisely, only investing time on important decisions and avoid-

ing time wasted on determining distinctions that are mostly

irrelevant (i.e., occurring only with low probability). This is

part of the reason we have applied the sobriquet ‘lazy’ to our

algorithm, as it need not compute a precise distance measure

if it can make the determination sufficiently well given the

probabilities involved. But, as the recorded running-times

from our experiments show, further optimization is needed

to fully realize the potential to spend less computational

time. Leveraging a recent result in [4], we already know

that there are a class of filters and probabilistic models for

which the computation time is never any worse than the non-

probabilistic case, namely ones for which one of the filters

and probabilistic model are homomorphic. This, and other

performance improvements, await treatment as future work.
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