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Abstract— Many groups of agents exhibit emergent collective
behaviors. The environment in which the agents operate is one
determinant of the resulting behaviors. This work shows how
automatic enumeration of environments enables exploration of
various collective behaviors that perform useful group functions
(e.g. segregation, corralling, shape formation). Although groups
of agents, such as mobile robots, can be manipulated through
explicit control, this study shows that these systems can be use-
fully manipulated without resorting to such imperative means.
This method has obvious uses for heterogeneous robot systems,
especially those which include large numbers of simple agents.
The method introduced is general, in that it takes as input: (1)
algorithmic specifications of the environment generation, (2)
a black-box model of the individual agent’s control laws, and
(3) a mathematical description of the task objective. To show
the validity of the proposed method this investigation studies
two behaviors (splitting and corralling) for three commonly
studied motion models, including the well known Reynold’s
model. Simulations and physical multi-robot trials show that
automatically generated environments can elicit pre-specified
behaviors from a group of individual agents. Additionally, this
work investigates the effects of a group’s emergent properties on
the ability to elicit the specified behavior via the environment.
The findings suggest that automatically exploring environments
can lead to better exploration and understanding of collective
behaviors, including the identification of previously unknown
emergent behaviors.

I. INTRODUCTION

Collective emergent behaviors exhibited by groups of in-
dividuals are seen in our everyday world (e.g., birds flocking,
fish schooling, pedestrians forming lines). Certain aspects of
these observed behaviors can be explained by understanding
the individual agent’s control laws that depend on local inter-
actions among neighboring agents. However, it is difficult to
define which resultant collective behaviors are elicited by the
individual control laws. Some of these behaviors may only
exist due to the effects the environment has on the individual
agents, thus influencing the observed behaviors. Figure 1
(a) shows a commonly used structure (fishing weir) for
corralling fish into a predetermined location. Using computer
simulated agents, Figure 1 (b) shows how the environment
can determine which group behaviors are exhibited.

Recent works [1, 2] have shown that a properly designed
environment can be useful in manipulating the exhibited
behaviors of a group of agents. Currently ad hoc techniques
are used to design such environments, which relies heavily
on experience and specific domain knowledge. While use-
ful environments have been produced, the process is time
consuming and cannot easily be generalized for a variety
of agents, tasks, or application domains. Moreover, these
approaches do not easily allow one the ability to investigate

(a) Human-made fishing weirs designed to corral fish in a
predetermined location.

(b) The left figure shows motions of simulated agents in an
empty environment and the right figure shows the effect the
environment has on the same agents.

Fig. 1: Figure 1a shows motivating examples of human-made fish-
ing weirs while Figure 1b demonstrates the effect an environment
can have on simulated agents.

emergent properties of a group.
How an environment influences an agent’s behavior de-

pends on whether that agent is operating in a group; gener-
ating environments to achieve objectives from a collective,
must take into account that the collective behaviors exhibited
by the group may be very different from that exhibited
by a lone individual. In practice this can help rather than
hinder the process of control, as there are environments that
can exploit collective dynamics. However, the connections
between the local environment-agent interactions and the
observed collective behaviors remain far from adequately
understood. Section III-B shows, through simulations, the
influence collective and emergent behaviors have on the
environment’s ability to manipulate a group of agents.

The generation and validation of environments that can
elicit a pre-specified behavior from a group is difficult for
two reasons: (1) how does one describe the infinite set of
possible environments, and (2) how does one practically
search among this set? To address these difficulties, this
work proposes the use of shape grammars for the auto-
matic generation of environments. Shape grammars [3] are
a proven way of automatically generating structured shapes
(environments) from a small set of primitive shapes and
rules. Through implementations of two distinct grammars,
this investigation shows that it is feasible to automatically
generate a searchable set of environments and are able to



show that such environments do influence a group’s behavior.

A. Related Works

Beyond explicit control, the most common approaches for
manipulating a group of agents is either through the use of
heterogeneous group members [4, 5, 6] or through the use of
external agents [7, 8, 2] (e.g., shepherds). Works that utilize
heterogeneous group members typically use informed agents
that have a preferred behavior bias (e.g., preferred location
in the environment) or a different set of control law gains,
or additional information. One dilemma with this approach
is that it is not always practical to introduce informed
agents into a given group (e.g., how would one introduce an
informed agent into a flock of wild birds?). Furthermore, it
is not always clear that the use of internal agents could elicit
more complex behaviors, such as segregation based on agent
characteristics (e.g., separate the males from the females).

In the case of shepherding methods, individual group
members are generally repulsed by the external agent(s),
thus the typical question studied by these works is “What
motions must the external agent(s) perform in order to get
the group to the goal state?” The method presented in
this work differs in two ways: (1) it illustrates that static
environments suffice because they take advantage of inter-
agent interactions to form predictable group behaviors and
(2) it does not require a model of the individual agents for
the generation of environments. It is important to note that
this approach does not utilize a model of the agents to be
manipulated, thus the approach is agnostic to the individual
agents.

Other manipulation work has utilized the implicit agent
control afforded by the environment [1]. These works show
that a group of very simple robots can be successfully guided
to a specific location in space through an environment com-
prised of static walls and one-way passive gates. Bobadilla et
al. [1] used prior knowledge of how the simple robots will
move and react with the environment in order to build an
environment which was capable of eliciting the pre-specified
behavior. The robots in this work do not communicate with
the other robots, explicitly, which suggest this group is
incapable of exhibiting more complex collective behaviors
in the absence of an environment. Even though it is possible
to manipulate the simple robots in [1], the slightly more
complex agents studied in this work allow for environments
to take advantage of the group’s emergent properties (e.g.,
aggregation), and thus can accomplish more complex tasks
with less complexity in the environment.

II. PROBLEM STATEMENT AND APPROACH

The approach aims to enumerate a set of environments (E)
that elicit a pre-specified behavior (B) from a group of agents
that obey the given motion model1 (M). In other words,
the pre-specified behavior and the agent’s motion model are
provided to the system, which outputs a set of environments

1The motion model for the agents is a black-box; the details which
determine the motion of the agents is not used for generating environments
and is only used for environment validation.

that elicit the behavior B from a group of agents acting
according to M. The specified behavior can be any group
level behavior ranging from simple point-to-point navigation
to segregation based on agent classification (e.g., removing
the female sheep from the herd).

The agent motion model represents the low-level control
law each agent will execute during the simulation process
(e.g., Reynold’s rules [9]). This model is only used in the
validation of the generated environment and not in the enu-
meration process, therefore the generation of environments
is agnostic to whether or not the group is homogeneous.
Figure 2 presents an overview of the structure and data-flow
of the environment generation and validation method.

To generate the set of valid environments for the specified
behavior and motion model, the approach requires a schema
of the environment, denoted by S. For this work, a valid
environment is any environment that elicits the pre-specified
behavior from the given group of agents. The environment
schema represents both the environmental building blocks
and the rules for the creation of environments. The building
blocks of an environment describe the low-level features,
such as a wall, starting region, or a wedge. The rules within
a given schema detail how the various building-blocks can
be manipulated. For example, a rule can state that two walls
can be joined together to yield a wall twice the length of a
single wall.

Using the given environment schema, the environment
generation module applies the schema’s rules to create a
single environment (ei) that is passed through an environment
filter, denoted by the right facing arrow in Figure 2. The
purpose of an environment filter is to reduce the number
of environments that are rigorously tested through the use
of basic domain knowledge. For instance, there may be
resource limitations for constructing environments (e.g. lim-
ited length of fencing material); the filter could exclude any
environments that exceed the upper bound on environmental
resources. Any environment ei that passes the filter is added
to the environment queue2. It is important to note that a filter
is not always required; the primary purpose of a filter is to
allow the schemas to be as general as possible.

The system then validates the filtered environments by
simulating the motions of the agents within the environ-
ment ei. The motions generated in simulation will be an-
alyzed and compared with the behavior B. If the simulated
motions of the agents represent the specified behavior, then
the environment ei will be added to the set E. When the
simulated motions do not match the specified behavior B, ei
is discarded.

A. Implementation

The description to this point has been given in high-level
and generic terms, thus the various modules and inputs to
the system can be implemented in a variety of ways. This
section details the current implementation of the approach,
which includes a novel procedure for the enumeration of

2For the implementation in this work the queue is a simple first in first
out queue.



Fig. 2: A diagram of the presented
method to automatically enumerate a set
of environments that elicit a pre-specified
behavior from a group of agents. The
Environment Schema (S), Motion Model
(M), and Behavior (B) are all user defined
inputs to the system and remain constant
during the system’s execution. The output
is a set of environments (E) that elicit
the specified behavior from the group of
agents.

environments through the use of shape grammars (i.e., shape
grammars are used to implement the environment schemas).

Shape Grammars
Shape grammars are similar to typical symbol grammars [10]
in that they have a set of symbols (shapes or building-blocks)
and rules, that together, generate syntactically valid strings
(environments). The key difference in a shape grammar
is that the rules encode spatial and geometric properties,
such as pose and orientation. This study only considers
two-dimensional polygonal shapes but, in general, shape
grammars can be used in higher dimensions [11] and with
non-polygonal shapes [12]. For the original definitions and
a more detailed treatment of shape grammars, please see the
seminal shape grammar study [3].

The basic structure of a shape grammar consists of left-
side and right-side shapes. Left-side shapes represent which
shape the rule will apply to and the right-side shape repre-
sents the final shape after the rule is applied. Potential rules
range from addition, where another shape is added to the
left-side shape (Figure 3a), to substitution, where the left-
side shape is replaced by another shape (Figure 3b). Another
common rule found in shape grammars is modification,
where the left-side shape is modified is a particular way (e.g.,
the left-side shape is rotated by 15 degrees); see Figure 3c.

(a) Addition (b) Substitution (c) Modification

Fig. 3: Examples of three common rules in shape grammars.

Shape grammars can also use combinations of non-
terminal shapes, terminal shapes, and markers. Both non-
terminal shapes and markers are only used in the generation
of the environment and are never a part of the environment
itself. These shapes are used to help define the underlying
structure of the environment. Terminal shapes, such as walls
(lines), are shapes the agents will interact with during the
validation procedure and are items that must be physically
constructed.

This work implements two grammars using the Shape
Grammar Interpreter3 (SGI) given in [14] along with two
corresponding environmental filters. Figure 4 outlines the
splitting and corralling shape grammars used in this work.
For both of the grammars in Figure 4 there is a corresponding

3SGI version 1.31 from the Source Forge repository [13].

environmental filter. The splitting grammar filter only ac-
cepts environments that contain at least three terminal shapes.
The corralling grammar filter only accepts environments that
have an obstacle free path from the origin marker, which
must be within the convex hull of the terminal shapes, to an
arbitrary point outside of the convex hull of the terminals.

(a) Splitting Grammar (b) Corralling Grammar

Fig. 4: The splitting grammar uses a non-terminal shape (square),
which is used to help define the structure of the environment and a
single terminal shape (straight line). The corralling grammar uses
one terminal shape (straight line) and one non-terminal (marker),
which defines the origin.

Pre-specified Behaviors
The two behaviors chosen in this study are splitting and
corralling. These behaviors where chosen because they are
commonly exhibited by real (biological or physical imple-
mentation) systems. Splitting behaviors are defined by any
behavior where the group fragments into at least two groups
for k consecutive iterations. This study considers a group
to be performing the corralling behavior if and only if the
group does not fragment and the centroid of the agent’s
positions remains within radius r from the origin for at least
k consecutive iterations of the simulation.

Motion Models
The agent’s motion model is the low-level control law, or
algorithm, which determines the next location the agent will
move towards. For validation purposes, this work implements
three motion models from the flocking literature; (1) Random
Plus4 [15] (RM+), (2) Simple Nearest Neighbor Plus [15]
(SNN+), and (3) Reynold’s Boids [9] (RB). It must be noted
that in addition to the motion model, each agent is biased
toward a single direction. This addition was necessary to
ensure the group would pass through the environment. This

4The plus term signifies the addition of environment avoidance to the
motion model.



additional motion can be seen as fish moving with the flow
of a river’s current.

III. FINDINGS

A. System Validation

Using MatLab (version R2011b) this study implements
the aforementioned motion models, three specified behaviors
(Table I), the two environment filters, and the framework
of the proposed system (excluding the SGI software). The
system is executed for 1000 environment generations for
each of the three behaviors to verify the system was capable
of generating environments that elicit a pre-specified behav-
ior. Note that the same 1000 environments were used for
both the simple split and balanced split behaviors as both
behaviors where tested on environments generated by the
splitting grammar. The results presented in this section show
that the system successfully generates, filters, and validates
environments that elicit a pre-specified behavior from a given
group of agents obeying a particular motion model.

Simple Split
A group exhibits this behavior when the agents fragment
into at least two distinct groups for k = 50 consecutive
iterations. Group membership is determined based on the
fragmentation threshold of 25 units. This behavior must be
elicited within 200 iterations.

Balanced Split
A group exhibits this behavior when the agents fragment
into at least two distinct groups for k = 5 consecutive
iterations. The groups are considered balanced when the
entropy of the system is at least 30% of the maximum
entropy. Group membership is determined based on the
fragmentation threshold of 25 units. This behavior must
be elicited within 200 iterations.

Corralling
A group exhibits this behavior when the centroid of the
agent’s position is within a threshold distance of 25 units
of the origin (0,0) for at least k = 50 consecutive iterations.
Additionally, the group must not fragment (based on the
fragmentation threshold of 25 units). This behavior must
be elicited within 500 iterations.

TABLE I: Specifications of the behaviors used in this study. Each
of the parameter values for the behaviors where arbitrary chosen
before executing the system. This was done to avoid any validation
errors due to over-tunning the parameter values.

Of the 1000 environments that where generated from both
the splitting and corralling grammars, 53.7% and 50.0%
passed the respective filters. Figures 5 and 6 are example
environments that were generated by the SGI and that passed
the respective environment filters. Examples of environments
that did not pass the filtering process are not shown here due
to space limitations.

Fig. 5: Three environments that were generated using the grammar
in Figure 4a and passed the splitting grammar filter.

Fig. 6: Three environments that were generated using the grammar
in Figure 4b and passed the corralling grammar filter.

For each environment that passed the environment filter
procedure, the system conducted a single simulation to
determine if the environment elicited the specified behavior
from the given motion models. Table II shows the results
from the validation process using 25 homogeneous agents for
each simulation. In the case of the worst performance (SNN+
and the corralling behavior), 22.4% of the generated environ-
ments elicited the specified behavior, and in best case (RM+
and the balanced split behavior), 46.8% of the generated
environments elicited the specified behavior. Figure 7 shows
simulation results from three environments that elicited the
simple split behavior. For all plots in this publication, the
color gradient (blue to red) represents simulation time.

RB SNN+ RM+

Simple Split 48.98% 69.65% 86.41%

Balanced Split 49.35% 71.32% 87.15%

Corralling 60.28% 44.71% 50.70%

TABLE II: The percentage of environments that generated the pre-
specified behaviors for the three motion models. These percentages
only consider the number of environments that passed the filtering
process.

(a) RB (b) SNN+ (c) RM+

Fig. 7: Three different environments that successfully elicit the
simple split behavior for each motion model.

(a) RB (b) SNN+ (c) RM+

Fig. 8: Three different environments that successfully elicit the
corralling behavior for each motion model.

To support the claim that the environments generated and
validated by the system can successfully manipulate multi-
robot systems, physical trials with four iRobot Creates were
conducted. Each robot is equipped with a Hokuyo URG-
04LX-UG01 laser range finder and an ASUS Eee PC. For the
trials, a single environment that was generated and validated
by the system for both the splitting and corralling grammars



was constructed. Figure 9 shows time series from two
separate successful physical robot trials and Table III shows
the results of all 30 robot trials in addition to comparable
simulation trials.

Robotic

RB SNN+ RM+

Simple Split 40.0% 100.0% 80.0%

Corralling 20.0% 20.0% 0.00%

Simulated

RB SNN+ RM+

Simple Split 60.0% 80.0% 100.0%

Corralling 40.0% 20.0% 0.00%

TABLE III: Validation results of two environments (one generated
from each grammar) for both robotic and simulated agents. Each
pre-specified behavior was tested with one environment selected
from the set of valid environments, that were generated for the
initial validation trials, and simulated over five trials; totaling 30
robotic and 30 simulation trials. The simple split behavior was
tested using four agents, while the corralling behavior was tested
using three.

For the physical robot experiments the corralling behavior
was slightly modified to include groups that only maintain
two-thirds connectivity. In other words, if two of the three
robots are considered to be performing the corralling be-
havior, then the environment is said to elicit the specified
behavior. This modification is advantageous because of (1)
the noise in the sensing, perception, and action of the robots,
(2) the difficulties in scaling the environment, and (3) the
fewer number of agents means that proportions for single
agent events are larger.

B. Emergent Properties Influence of Controllability

From the previous literature and from the above simula-
tions, it is clear that the environment can have an influence
on the exhibited behaviors of a group. However, the effect
of collective behaviors on the environment’s ability to elicit
a given behavior has not been the subject of extensive study.
To demonstrate the effect of emergent properties, detailed
simulations for five environments, that were validated for the
simple split behavior, were conducted. For each environment,
four sets of experiments, each with ten trials, were con-
ducted. The only parameters modified for each set was group
size and the starting radius of the group. Table IV shows
the parameters5 used and the percentage of simulations that
elicited the simple split behavior.

Examining the total percentages from Table IV one can
see that the RM+ model exhibits the simple split behavior
more frequently than both the RB and SNN+ models. This
is due, in part, to the aggregation properties of the RB and
SNN+ motion models. Moreover, notice that as the group
size decreases the success rate increases. When the group

5The values in this work were hand-selected in order to highlight the
influence of emergent properties. Further work must be done to properly
classify the influence.

# Agents Start Radius RB SNN+ RM+

Set 1 2 10 units 100% 96.0% 100%

Set 2 25 10 units 60.0% 40.0% 84.0%

Set 3 25 40 units 0.00% 46.0% 62.0%

Set 4 100 40 units 96.0% 74.0% 96.0%

Total 64.0% 64.0% 85.5%

TABLE IV: Results from simulations exploring the simple split
behavior. Each set contains simulation results from five environ-
ments and ten samples for each environment.

size is two (Set 1) all of the environments almost always elicit
the simple split behaviors. This suggest that the decrease in
group size reduces the influence of the collective properties
exhibited by the group, and thus affects the controllability of
the group.

Another example where collective behaviors influence the
environment’s ability to manipulate the group can be seen
in Figure 10. The simulation results in Figure 10 show
the motions of agents obeying the RB motion model in
the presence of an environment generated by the corralling
grammar. The only difference in the results is the size of
the group. These results show that the corralling behavior is
only exhibited when the group is of sufficient size. Again,
this suggests that some collective properties may afford more
controllability of the group by the environment.

(a) One Agent (b) Three Agents (c) 50 Agents

Fig. 10: These simulation results were generated using identical
parameters with exception to group size. Together these results
show how the corralling behavior is only elicited when the group
is of sufficient size (Figure 10c).

IV. CONCLUSION

Observing groups of individual agents in the real world, it
is clear that the environment plays a role in what behaviors
the agents exhibit. Until this work, there have only been
ad hoc methods for generating environments to elicit a
pre-specified behavior from a group. This investigation has
introduced and implemented a system that can automatically
generate and validate environments that elicit a specified
behavior from a group of individual agents obeying a given
motion model. Through computer simulations and physical
robot trials, this study has shown that the proposed system
can indeed produce valid environments. Additionally, this
work has shown (through simulation) that emergent proper-
ties of a group have an influence on the environments ability
to elicit the specified behavior.

The use of the proposed system will allow one to explore
many aspects of emergent and collective behaviors. For



(a) Splitting

(b) Corralling

Fig. 9: These two time series shows a multi-robot system obeying the SNN+ motion model being manipulated by environments that were
generated by the presented system.

example, the system could be easily extended to work that
considers manipulating groups with external agents. If the
environment is reduced down to a set of individual points,
as shown in Figure 11, it is possible to use the generated en-
vironment as a blueprint for multi-robot formations; similar
to the formations used in [8].

In addition to exploring various aspects of collective
behaviors and emergence and what behaviors the environ-
ment exploits, many questions regarding the development
of grammars and behavior specifications still need to be
investigated. This tool needs to be applied to more complex
behaviors, such as segregation of fast and slow (strong
and weak) agents and splitting agents into individual pens.
Possible approaches including adding in attractive terminal
shapes (e.g., food source) and/or adding in dynamic terminal
shapes (e.g. controllable gates).

(a) Environment (b) Possible Robot Formation

Fig. 11: The left figure shows an environment that was generated
via the proposed system that is eliciting the corralling behavior from
a group of agents. The right figure shows the same agents being
controlled by a set of point (robots) that are in a formation based
on the generated environment.
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