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Abstract— Sensorless part orienting has proven useful in
manufacturing and automation, while the manipulation of
deformable objects is an area of growing interest. Existing
sensorless orienting techniques may produce forces which have
the potential to damage deformable parts. We present an
algorithm that, when provided a geometric description of the
part and a deformation model, generates a plan to orient the
part up to symmetry from any initial orientation. The solution
exploits deformation of the object under certain configurations
to help resolve ambiguity. The approach has several attractive
features: (1) the resulting plan is a short sequence of such
actions guaranteed to succeed for all initial configurations;
(2) the algorithm operates even with a very simple model of
deformation, but is extensible when specialized knowledge is
available; (3) failure to find a feasible solution has precise
semantics (e.g., inadequate manipulator precision). We validate
the algorithm experimentally with a pair of low-precision robot
manipulators, orienting 6 parts made of 4 types of materials,
with the correct orientation being reached on 80% of the 192
trials. Careful analysis of the failures emphasizes the impor-
tance of low-friction conditions, that increased manipulator
precision would be beneficial but is not necessary, and a simple
deformation model can suffice. In addition to illustrating the
feasibility of sensorless manipulation of deformable parts, we
note that the algorithm has applications to manipulation of non-
deformable parts without the pressure switch sensor employed
in existing sensorless orienting strategies.

I. INTRODUCTION

Research on sensorless manipulation has produced a series
of methods that are useful for factory assembly lines and
scenarios employing automation [1], [2], [3]. These tech-
niques, however, make use of the rigidity of the objects they
manipulate. There is a growing interest in the manipulation
of deformable objects (cf., the book by [4] and treatment
by [5]) including the widely publicized demonstration by
Maitin-Shepard et al. [6]. Applications which bring together
both lines of research are easy to identify: many of the
objects we wish sorted, organized, and packed are non-rigid.
Automating such operations without using sensors has the
potential to decrease cost, improve reliability, or both.

Broadly speaking, prior work on manipulating deformable
objects is information-centric. Robots make extensive use
of sensor information, prior knowledge of the object’s ini-
tial configuration, and sophisticated explicit representations,
some of which also model uncertainty. Henrich and Wörn [4]
actually state that sensors are necessary for useful manipu-
lation of deformable objects, a position which appears to be
widely presupposed. Moreover, the robots themselves may
have other forms of complexity, e.g., intricate multi-fingered
grippers are usual. In contrast, this work eschews such
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elements and employs a minimalist approach. No sensors
are involved and no explicit representation of the object’s
configuration (or set of conceivable configurations) need be
computed at run time. The robots we use are also cheap,
simple, low precision devices.

At first glance it appears that doing away with sensors
only makes the problem more challenging. In fact, Mason [7]
observes that roboticists have reached a point of sensor
dependency so that sensors are mistakenly seen as the only
means of obtaining knowledge and reducing uncertainty.
This work demonstrates that plans can be constructed that
deform objects in order to gain information. Furthermore,
because the sensorless approach avoids explicitly modeling
information states of the system [8] at run time, it does not
require a rich model of the way the object may deform
(e.g., using finite-element models, recording probabilities
over a continuous shape distribution, etc.). Making fewer
informational assumptions deemphasizes the race to build
increasingly complex models to improve verisimilitude and
precision; this reduces brittleness as a function of a myriad
of model parameters (e.g., friction coefficients, restitution
constants, torsion moduli, and so on). Ultimately, this work
reflects a different philosophical stance: a Pandora’s box of
challenges is opened once one opts to to build predictive
models of complex deformable objects. Removing sensing
alters the problem since, rather than attempting to observe
the state of the world, one is content to understand which
states are no longer possible.

II. RELATED WORK & PROBLEM SPECIFICATION

Sensorless parts orienting grew from reseach on compliant
motion planning and the study of mechanical parts feeders:

Fig. 1: A deformable polygonal
part (US dollar is an example)
starting in an unknown con-
figuration is reoriented without
sensors using two robots with a
shared workspace. The primary
manipulator (right) with one
degree-of-freedom in operation
space, and the secondary ma-
nipulator able to PUSH, GRASP,
and REORIENT (below).



Fig. 2: Diameter(oi) is a plot of the four-gon part’s diameter
for all orientations oi. Squeeze(oi) is the final orientation after a
sweep (squeeze) occurs, given an initial oi.

the former found the idea of using mechanical compliance
to reduce uncertainty, while the latter are devices specialized
for repetitively orienting identical parts. This work utilizes
compliant motion analysis initially developed by Brost [9] in
his study of grasp planning with uncertainty for a parallel-
jaw gripper and subsequently modified for sensorless parts
orienting by Goldberg [1]. Brost’s push diagram represents
all possible motions of a part grasped by a parallel-jaw
gripper, allowing grasping plans robust to uncertainty in
friction and orientation. Brost’s result uses the rule found
by Mason [10] for predicting the direction a part will rotate
when pushed under Coulomb friction.

Fig. 1 is an example of the scenario we consider in this
work; two low precision robot manipulators were set up to
share a workspace. We do not employ a reorientable parallel-
jaw gripper and can not apply squeezes until the part is stably
oriented because the part may deform.

III. APPROACH

A. Model Assumptions

We make explicit the assumptions of the model we employ
in the table below. Essentially we use a classic model;
assumptions (#)–(#) are from Brost [9], Mason et al. [11],
and Goldberg [1], but with slight generalizations necessary
for non-rigid parts: (#) carries over from previous work,
simply adding analogous “elastic forces” that arise from
deformation; (#) allows Goldberg’s analysis to be applied
to deformable parts. Finally, (#) is added to define the
circumstances in which deformation occurs and these are
quite natural given (#). Controlled deformation of the
object within only those stable orientations simplifies the
deformation model, which otherwise could be onerous to
construct.

Rather than posit a precise class objects, this paper axiom-
atizes the requirements as a list of assumptions. The model

for the deformation behavior itself is left unspecified, which
allows it to be sophisticated or very simple, and is used
for computing volumes within which the object falls. The
D-space model of [14] for linearly elastic polygons (via a
triangular finite element mesh model) provides circumstances
in which assumption # holds, i.e., when the orientations
form deform closure grasps.

Assumptions

# Inertial forces, frictional forces, and part elastic forces are
negligible in comparison to forces applied by manipulators.

# The sweeper and its fixed-wall can be modeled as a parallel-
jaw; with all motions orthogonal to the jaws.

# The convex hull of the part can be treated as a semi-rigid thin
planar polygon.

# Only one part is handled at a time.

# The part’s initial position is unconstrained as long as it lies
somewhere between the walls. The part remains between the
walls during sweeping, deforming, and pushing.

# The part’s center-of-mass (COM) is given and the coefficient
of friction with the support surface is independent of position
and velocity.

# There are zero frictional forces between the walls and part.

# Once contact is made between a wall and the part, the two
surfaces remain in contact throughout the sweeping motion.

# Elastic deformation occurs only in stable orientations. This
is a limited set of few orientations, each of which must be
modeled via a deformation model.

B. Parts: Geometry

This work extends previous work [1], [9], [3] in which the
dynamics of parts were analyzed using the parts’ polygonal
convex-hulls. We refer to the hull as the geometric descrip-
tion. From this edges are generated, and the first of these
is used as the orientation vector. We refer to the orientation
vector using oi where 0 ≤ oi ≤ 2π.

C. Goldberg’s Diameter and Squeeze Functions

Let Diameter(oi) be the diameter of a part in orienta-
tion oi. Goldberg [1] defines this function as the distance
separating the jaws of a parallel-jaw gripper when both jaws
first make contact with the part. Interpretation in our context
is slightly modified: it is the distance between the sweeper
and its parallel fixed-wall when both make contact with the
part. Next, Squeeze(oi) describes the rotational mappings
of one orientation to another as the parallel-jaws or walls
are moved closer together. Squeeze received its name from
the squeezing motion that occurs when a parallel-jaw gripper
is closed. In this work we refer to this as sweeping rather
than squeezing because a single movable wall resembles the
motion of a broom towards the fixed-wall.

Observing Fig. 2 we can see that when squeezed suf-
ficiently [1], or swept, the part will rotate to one of the
orientations at one of the minimums seen in the plot of
Diameter(oi). These minimums form a set O of important
orientations referred to as stable orientations in the literature.
One element of O for the four-gon part is shown in Fig. 3.
As can be seen, a stable orientation occurs when at least one



Fig. 3: A stable orientation of a four-gon part. This is an orientation
in which controlled deformation of the part can occur.

edge aligns with the sweeper or its parallel fixed-wall. In this
situation the rotational forces applied to the part sum to zero,
preventing further rotation. With sufficient force, sweeping
further from such an orientation will cause deformation of
the part. For this reason, we refer to the set O as the set of
deformable orientations.

Goldberg [1]’s squeeze operation involved the parallel-jaw
gripper closing until the rigidity of the part meant that further
reducing the diameter is impossible. This original squeeze
used a pressure threshold, which would fail if the object
is easily deformed, as in this work, Additionally, Goldberg
would reorient his gripper at each stage of his algorithm,
while our sweeper is not capable of reorienting.

Knowing the importance of the set O, we wish to exploit
these whilst orientating. We need only be concerned with
the squeeze portion of the sweeping action,1 and when we
perform a sweep, it begins from a region of the workspace
that the part is not present. Also notice that squeezes only
take place once the part has been pushed into contact with the
fixed-wall. This results in the first possible squeeze occurring
at the orientation with the largest diameter, and results in a
natural ordering of the deformable orientations from largest
to smallest diameters (Fig. 4).

Write the complete ordered set of k sets of deformable
orientations as O = {Θk−1,Θk−2, ...,Θi, ...,Θ0}. We pro-
duce controlled deformations of the object only in these
orientations. Before proceding further, we define the basic
actions involved.

D. Manipulator Actions

SWEEP(Diameter(oi)) moves the sweeper (primary manip-
ulator) so that it is a distance of Diameter(oi) from the
static wall. Subscript i denotes that these are values in O.
Examples can be see in Fig. 7a–7b and Fig. 7g.

DEFORM(Diameter(oi)− δi) is essentially the same as the
preceding operation as it is a sweeping motion that is applied
only a distance of δ (recall, δ is the sweeping distance
for safe and sufficient deformation) beyond how a SWEEP
would do, but with the possibly of deforming the part. An
implementation may also find it useful to apply additional
down force in this action.

1Owing to space limitations, we state this fact without proof; it follows
from analysis similar to Goldberg’s for pushes preceding squeeze operations.

Fig. 4: The k levels of deformable orientations ordered from
smallest to largest diameter. To help visualize this, one may imagine
a horizontal sweep from the top downward.

PUSH(P̃path) involves the secondary manipulator following
P̃path to push a deformed part; it reduces the possible
positions along the axis perpendicular to the direction of
sweeping action, see Fig. 7d and Fig. 7h.

GRASP(G̃path) & REORIENT(R̃path) work together. A part
that has been deformed and subsequently pushed is in a well-
defined position; the two actions first pick up the deformed
part and then place it back within in the workspace within
φ of o0 ∈ Θ0 (see Fig. 7e–7f).

E. Models and Constraints

Two further elements must be introduced to completely
formulate the actions and to decide whether deformation
should be permitted (i.e., without damaging the part).

1) The Deformation Model, denoted with part specific
function Deformation(Θi, δi) 7→ 〈V oli, Comi〉, takes a set
of orientations Θi and a deformation distance δi for the part
and provides a volume V oli that is guaranteed to contain
the deformed part and a spherical volume Comi guaranteed
to contain the part’s center of mass. The deformation model
should indicate that a part will be damaged when δi is too
great (formally, this can be done by returning an empty
volume).

As illustrated in Fig. 5, the tent model used in the
experiments follows the definition of the deformation model
and provides V ol and Com by modeling the deformation
with a tent or hinge model. Due to the simplicity of the
tent model, these volumes can be overly large in order to
be sufficiently conservative. Hirai et al. [12] worked on
modeling thin deformable parts, similar to those presented in

Fig. 5: A trivial deformation model for an arbitrary part we refer
to as the tent model. δ is a deformation distance. β is the angle
used to describe excessive deformation. V oli is a volume created by
incorporating tolerances of the part deformation and is guaranteed
to contain the deformed part. Comi is a volume guaranteed to
contain the part’s COM.



(a) PUSH constraints. (b) GRASP constraints.

(c) The REORIENT constraints.

Fig. 6: End-effector constraints are necessary to constrain the
trajectories found by the motion planner for the PUSH, GRASP, and
REORIENT actions by the secondary manipulator.

this work, by analyzing the potential energy under geometric
constraints. Such a model could be tighter, but we show that
such accuracy is not always needed. Any deformation model
of choice may be used.

2) End-effector Constraints are used for three actions in
which a motion planner is necessary (PUSH, GRASP, and
REORIENT). We did not want to constrain this work to any
specific motion planner. Thus, we developed end-effector
constraints that can use by a typical motion planner to
guarantee successful actions. (These can also be refined in a
straightforward way for different styles of manipulators and
grippers.)

The first end-effector constraints are for PUSH, see Fig. 6a.
These are volumetric constraints that guarantee a successful
PUSH. Utilizing the two volumes returned by the deformation
model, we need the manipulator action path planner to
generate a P̃path that will push the part without applying
enough rotational forces to topple the part. We begin by pro-
jecting a volume, less the manipulator positioning tolerances,
along the normal of the gripper. This volume must contain
the Comi provided by the deformation model. Next, we
project a similar volume along the potential P̃path that must
contain a push-contact surface area on the part. The motion
planner is then free to generate a sequence of collision free
configurations that meet these constraints and will push the
part to the corner. For the final P0 = PUSH(P̃path−0) the
constraints are loosened to collision free pushing with the
gripper tip pushing along the work surface.

For the GRASP end-effector constraints, see Fig. 6b, we
followed the work of Smith et al. [13] in computing parallel-
jaw grips for rigid polygonal parts by placing two grip points
representing the jaws of the gripper collision free around
the part. The placement of the grip points is constrained by
the grip axis, the line joining the grip points, which must
pass through the part’s center-of-mass. We modify this last

requirement as follows: the grip axis is extended beyond
both grip points and a volume based on the dimensions of
the jaws is projected along the grip axis. This grip volume
must contain the Comi provided by the deformation model.
We assume that the foam lining the parallel-jaw gripper
prevents undesirable deformation of the part during grasping.
For a more accurate GRASP applicable to more manipulators
the work of Gopalakrishnan and Goldberg [14] should be
considered, where they take into consideration factors that
include deformation due to grasping.

REORIENT is a complex action akin to a pick and place
operation that we have strived to define by a simple set of
end-effector constraints, see Fig. 6c. Using a motion planner
we place the following requirements on the manipulator
configuration path. From the final GRASP manipulator con-
figuration there must exist a manipulator configuration that
holds the part at a o0±φ, where o0 ∈ Θ0, with the parallel-
jaws at an angle α for which the gravitational forces are
sufficient to pull the part to the work-surface. This assumes
that the release/place phase of REORIENT is smooth and slow
enough that the part will stay in o0 ± φ. The tolerance φ
is extracted from the Diameter plot and is the maximum
allowed reorientation difference from the goal orientation
o0 ∈ Θ0 that will still guarantee successful reorientation.

IV. ALGORITHM

Input for a particular part takes the form of a geomet-
ric description and a deformation model, which are each
described in more detail below. First, the algorithm com-
putes the set O of deformable orientations by generating
the Diameter function and then applying the Squeeze
function (as described in Section III-C). The set deformable
orientations is then group into subsets based on symmetry in
Diameter and placed in O, which is then sorted on diameter.
Working in reverse order, Algorithm IV.1 will first call upon
the manipulator action path planner (Algorithm IV.2) to
determine a safe and sufficient δi and calculate P̃path−i,
G̃path−i, and R̃path−i.

To determine δi and the action paths the manipulator
action path planner, requires the symmetrical subset of
deformable orientations Θi and the deformation model. The
manipulator action path planner begins by initializing ∆ a
user specified parameter for the step size of δi, each of
the action constraints, the work space configuration WS, a
container V C for the volumes returned by the deformation
model, δi, and the action paths.

The manipulator action path planner will pass WS, V C,
and the relevant action constraints to a motion planner to
determine each of the action paths. For the terminating
orientation the manipulator action path planner will only
find a P̃path−0, and for any other Θi the manipulator action
path planner will determine a δi while querying the motion
planner for a P̃path−i, G̃path−i, and R̃path−i.

Once the manipulator action path planner has returned
the action paths and δi, the algorithm will determine if the
precision is sufficient by assuring that action paths were
found and that a DEFORM(Diameter(oi) − δi) will not



deform oi−1 ∈ Θi−1. This check of δi is necessary to
maintain the ability to distinguish between oi ∈ Θi and
oi−1 ∈ Θi−1. For the terminating orientation, the algorithm
only needs to assure P̃path−0 exists to check for sufficient
precision.

There are three reasons the algorithm might determine
there is insufficient precision:

1) The deformation model is too pessimistic, i.e., volumes
that bound the deformed object are too large.

2) Robots are too imprecise, so the tolerances are too large
and the end-effector constraints are unable to be met.

3) The motion planner is not complete.

If the precision is insufficient then the algorithm
will return an indication that greater precision or
a complete motion planner2 is needed. Otherwise,
when precision is sufficient, the algorithm will
generate a sequence of Si = SWEEP(Diameter(oi)),
Di = DEFORM(Diameter(oi)− δi), Pi = PUSH(P̃path−i),
Gi = GRASP(G̃path−i), and Ri = REORIENT(R̃path−i) for
each deformable orientation with a diameter greater than
the terminating orientation o0 terminated by a sequence of
S0 = SWEEP(Diameter(o0)), and P0 = PUSH(P̃path−0) for
the terminating orientation o0. This combined sequence of
actions will be returned as the Plan to be executed by the
robot manipulators.

Algorithm IV.1 Constructing an Orienting Plan
Input: • Geometricdescription: a counter-clockwise list of vertices

of the convex-hull: geo = {〈x0, y0〉, 〈x1, y1〉, ..., 〈xk, yk〉}
• Deformation model: DM(oi, δi) 7→ 〈V oli, Comi〉

1: Find the k deformable orientations O, by utilizing Squeeze and
grouping symmetrical deformable orientations using Diameter.

2: Order O such that Diameter(o0) < ... < Diameter(ok−1)
3: for i = k − 1 down to 1 do
4: 〈P̃path−i, G̃path−i, R̃path−i〉 ←MAPP (Θi, DM(oi, δi))

5: if (P̃path−i = ∅ ∨ G̃path−i = ∅ ∨ R̃path−i = ∅) ∨
. (Diameter(oi)− δi < Diameter(oi−1)) then

6: return: “Insufficient precision for Θi or
motion planner incomplete.”

7: end if
8: Si = SWEEP(Diameter(oi))
9: Di = DEFORM(Diameter(oi)− δi)

10: Pi = PUSH(P̃path−i)

11: Gi = GRASP(G̃path−i)

12: Ri = REORIENT(R̃path−i)
13: end for
14: P̃path−0 ←MAPP (Θ0, DM(o0, δ0 = 0))

15: if (P̃path−0 = ∅) then
16: return: “Insufficient precision for o0 or

motion planner incomplete.”
17: end if
18: S0 = SWEEP(Diameter(o0))
19: P0 = PUSH(P̃path−0)

Output: Plan= {Sk−1, Dk−1, Pk−1, Gk−1, Rk−1, ..., S0, P0}

2If a probabilistically complete planner like a sample-based method is
used, then this can be repeated with a policy to increase the number of
samples until either a solution is found or the probability of failing to find
a solution is low enough to satisfy the user.

Algorithm IV.2 Manipulator Action Path Planner (MAPP)
Input: • Part orientation: oi

• Deformation model: DM(oi, δi) 7→ 〈V oli, Comi〉
• ∆: parameter for δi step size

1: PCi ← PUSH(Θi)constraints {PUSH end-effector constraints ∀oi ∈ Θi}
2: PC0 ← PUSH(Θ0)constraints {PUSH end-effector constrain. ∀o0 ∈ Θ0}
3: GC ← GRASPconstraints {GRASP end-effector constraints ∀oi > o0}
4: RC ← REORIENTconstraints {REORIENT end-effector const. ∀oi ∈ Θi}
5: WS ← configuration following previously determined actions
6: V C ← ∅ {container for deformation model volumes}
7: δi ← 0
8: P̃path−i ← G̃path−i ← R̃path−i ← ∅
9: if oi = o0 then

10: for each oj in Θi do
11: V C ← V C ∪DM(oj , δi)
12: end for
13: P̃path−i ←MotionP lanner (WS,PC0, V C)
14: else
15: for δi = 0 to Diameter(oi) do
16: δi ← δi + ∆
17: for each oj in Θi do
18: V C ← V C ∪DM(oj , δi = 0)
19: end for
20: P̃path−i ←MotionP lanner (WS,PCi, V C)

21: G̃path−i ←MotionP lanner (WS,GC, V C)

22: R̃path−i ←MotionP lanner (WS,RC, V C)

23: if
(
P̃path−i 6= ∅

)
∧
(
G̃path−i 6= ∅

)
∧
(
R̃path−i 6= ∅

)
then

24: return: 〈P̃path−i, G̃path−i, R̃path−i, δi〉
25: end if
26: end for
27: end if

Output: 〈P̃path−i, G̃path−i, R̃path−i, δi〉

V. ANALYSIS

A. Correctness

We sketch the manner of proof. To prove correctness one
shows that the initial set of configurations Ck consisting of
all possible x ∈ X , y ∈ Y , and θ ∈ Θ is reduced in steps
Ck−1, Ck−2, ... to the set of configurations C1, defined as:

C1 ≡
{
〈x, y, θ〉 x ∈ X

y ∈ [0, Diameter(Θ1)]
θ ∈ {Θ | Diameter(θ) < Diameter(Θ1)}

}
.

This is achieved via a repeating sequence of five actions
(SDPGR)i: SWEEP, DEFORM, PUSH, GRASP, REORIENT;
each sequence is parameterized for a set of symmetrical
orientations Θi ∈ O, where each Θi is a set because
orientations are defined up to symmetry. Once the set of
configurations has been reduced to C1 a sequence of two
actions parameterized for Θ0, (SP )0, will reduce it further
to the terminating set of configurations C0:

C0 = 〈0, 0, θ ∈ Θ0〉. (1)

For the block of five actions (SDPGR)i, each sweep
reduces the Y set of conceivable locations of the part; it
marches steadily downwards to each diameter, for each i.
An object that will deform can only be in a deformable
orientation, and so the deformation by δi allows exactly
items in those orientations to be pushed (reducing their
X), picked up, and reoriented. Parts in non-deformable
orientations are unaffected. As progress is made, the index
i decreases, the feasible orientations are orientations below



the Diameter(Θi). This can be envisioned as a repeatedly
interrupted and resumed “squeeze” operation. The set C1 is
reached when exactly k steps have been reached, with any
part being deformed and reoriented at most once.

B. Plan length

The algorithm generates a plan which consists of a
sequence of k (SDPGR)-type actions, one for each set
Θi of symmetrical deformable orientations. Fewer than k
cannot guarantee to orient a deformable part from all initial
orientations and poses. To prove this, remove any action
(say i), then one can construct a scenario (by put part in
configuration C = 〈x ∈ X, y = 0, θ ∈ Θi〉, which places
the part in a deformable orientation along the fixed-wall)
which will be incorrectly handled as the part will either be
incorrectly oriented finally or be deformed more than δi (i.e.,
potentially violating the safety constraints). Thus, the plan is
short in that it has length ∈ O(|O|).

VI. EXPERIMENTAL VALIDATION

The experimental setup, shown in Fig. 1, has two low
precision Lynxmotion manipulators. They were set up at
right angles to one another with fixed walls on opposite sides
of a 29cm2 rectangular workspace. We basically replicated
the effect of a parallel-jaw gripper by making a moveable
wall (the sweeper) with a parallel fixed-wall and only allowed
the sweeper to move orthogonal to its parallel fixed wall. The
primary manipulator was set up to move the 1 degree-of-
freedom sweeper, and the secondary manipulator was set up
with seven degrees-of-freedom and a parallel-jaw gripper that
allowed it to perform all of the reorientation actions: PUSH,
GRASP, and REORIENT. To remain entirely sensorless, the
inverse kinematics were used to calculate pulse commands
that were sent serially to the manipulator control boards,
creating open-loop motions for each action.

The parts used for the experiments were made of card
stock, dollar bills, a textile patch, or foam material, each of
which was readily available, and proved easy to alter into
different shaped parts (see Table VI.1). Each of the four
materials had similar deformation characteristics that allowed
the use of the simplistic linear tent deformation model. Of the
nine parts used for the experiments, the algorithm generated
plans for six of them, the other three being determined to
be infeasible with the devices we employed. These plans
were then executed thirty-two times for each part with the
part being placed in a different initial orientation and pose
each time. The successes, failures, and reasons for failures
were recorded and are shown in Table VI.1. Note that we
have two measures for success: complete success is when a
part is correctly oriented and posed at the execution of the
plan without any violations of the assumptions or failures
of manipulator actions, and partial success is when the
part is correctly oriented after executing the plan, but some
assumptions were violated or actions fail during execution
of the plan (e.g., the part may stick slightly, or slip under
the sweeper, but still end up correctly oriented).

(a) Start (b) Sweep (c) Deform

(d) Push (e) Grasp (f) Reorient

(g) Sweep (h) Push (i) Final

Fig. 7: Complete plan for Card part.

Fig. 8 illustrates some of the data from Table VI.1 as a
whole and broken down by part.

Fig. 8: The complete successes, partial successes, and failures of
the experiments.

VII. APPLICATION TO TRULY SENSORLESS ORIENTING
OF RIGID PARTS

The algorithm generates plans that guarantee a deformable
part will be oriented up to symmetry in its convex-hull.
Here we describe possible modifications that would allow
the algorithm to orient rigid parts, but would do away
with the pressure threshold employed by Goldberg in his
method. In order to exploit the stable orientations for rigid
parts we propose the following alterations to this work.
A vertical degree of freedom is added which allows the
surface of workspace to be lowered and raised. First, we
replace DEFORM with LOWERWORKSURFACE and reorder



TABLE VI.1: The experimental results of 192 trials of 6 parts.

Failures
Deform.

Part Material Complete Friction Manip. Model Complete
Successes Precision Accuracy

Card card stock 22 6 4 0 4

Dollar dollar bill 7 11 3 11 14

Patch textile 23 6 1 2 3

Foam1 foam 18 7 5 1 9

Foam2 foam 22 7 3 1 7

Foam3 foam 22 9 1 0 1

Foam4 “Precision insufficient.”
→Due to overlapping deformation.

Foam5 “Precision insufficient.”
→Failed to meet PUSH end-effector constraints.

Foam6 “Precision insufficient.”
→Failed to meet REORIENT end-effector constraints.

the sequence of actions to: SWEEP, PUSH, LOWERWORK-
SURFACE, GRASP, RAISEWORKSURFACE, and REORIENT.
LOWERWORKSURFACE along with the assumption vertical
friction forces exist between the sweeper and the part, but
horizontal frictional forces do not (approximated by use
of horizontal roller-bearings) allows SWEEP(Diameter(oi))
to apply enough force to hold the rigid part in a stable
orientation in place for a GRASP and then a REORIENT to
occur.

VIII. CONCLUSION

Our two-tier definition of success shows that even with
a degree of pessimism, sensorless orienting of deformable
parts is possible. On aggregate, the approach described
works the majority of the time. Naturally, the success rate
depends on the part itself. The first salient point to address
in Table VI.1 is that of the failures due to friction. The
essential assumption of no friction between the part and
parallel-jaws (adopted widely in previous work) was found
to be even more important in this work where the part
slides along the walls (in a PUSH). It is understood that
the zero friction assumption an approximation for when
frictional forces are merely negligible, but this is more often
a cause of concern for our experiments. Nevertheless, the
assumption is workable under the conditions that can be
realized physically. The second leading type of failure is a
result of the manipulators having not only low precision,
but also non-linear variance of the precision throughout the
manipulator’s configuration space. The last type of failure
was a result of over simplification of the deformation model
for parts such as the dollar that had more variation in the
deformation.

REFERENCES

[1] K. Y. Goldberg, “Orienting Polygonal Parts without Sensors,” Algo-
rithmica, vol. 10, no. 3, pp. 201–225, 1993.

[2] M. Erdmann and M. T. Mason, “An Exploration of Sensorless Ma-
nipulation,” IEEE Journal of Robotics and Automation, vol. 4, no. 1,
pp. 369–379, August 1991.

[3] S. Akella and M. T. Mason, “Posing Polygonal Objects in the Plane
by Pushing,” in IEEE International Conference on Robotics and
Automation, 1992, pp. 2255–2262.

[4] D. Henrich and H. Wörn, Robot Manipulation of Deformable Objects.
London, UK: Springer, 2000.

[5] S. Hirai, T. Tsuboi, and T. Wada, “Robust Grasping Manipulation
of Deformable Objects,” in Proceedings of the IEEE International
Symposium on Assembly and Task Planning, 2001, pp. 411–416.

[6] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel,
“Cloth Grasp Point Detection Based on Multiple-view Geometric Cues
with Application to Robotic Towel Folding,” in Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), May
2010, pp. 2308–2315.

[7] M. T. Mason, “Kicking the Sensing Habit,” AI Magazine, vol. 14,
no. 1, pp. 58–59, 1993.

[8] S. M. LaValle, “Sensing and filtering: A tutorial based on preimages
and information spaces,” in Foundations and Trends in Robotics, 2011.

[9] R. C. Brost, “Automatic Grasp Planning in the Presence of Uncer-
tainty,” International Journal of Robotics Research, vol. 7, no. 1, pp.
3–17, 1988.

[10] M. T. Mason, “Manipulator Grasping and Pushing Operations,” Ph.D.
dissertation, Dept. of Computer Science, MIT, Cambridge, MA, June
1985.

[11] M. T. Mason and K. Y. Goldberg and R. H. Taylor, “Planning
Sequences of Squeeze-Grasps to Orient and Grasp Polygonal Objects,”
in Seventh CISM-IFToMM Symposium on Theory and Practice of
Robots and Manipulators, 1988.

[12] S. Hirai, H. Wakamatsu, and K. Iwata, “Modeling of Deformable Thin
Parts for Their Manipulation,” in Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference on, vol. 4, May
1994, pp. 2955–2960.

[13] G. Smith, E. Lee, K. Goldberg, K. Bohringer, and J. Craig, “Comput-
ing Parallel-jaw Grips,” in Robotics and Automation, 1999. Proceed-
ings. 1999 IEEE International Conference on, vol. 3, May 1999, pp.
1897–1903.

[14] K. Gopalakrishnan and K. Goldberg, “D-Space and Deform Closure
Grasps of Deformable Parts,” International Journal of Robotics Re-
search, vol. 24, no. 11, November 2005.


