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Abstract— The Linear Complementarity Problem (LCP) is a
key problem in robot dynamics, optimization, and simulation.
Common experience with dynamic robotic simulations suggests
that the numerical robustness of the LCP solver often deter-
mines simulation usability: if the solver fails to find a solution or
finds a solution with significant residual error, interpenetration
can result, the simulation can gain energy, or both. This paper
undertakes the first comprehensive evaluation of LCP solvers
across the space of multi-rigid body contact problems. We
evaluate the performance of these solvers along the dimensions
of solubility, solution quality, and running time.

I. INTRODUCTION

The Linear Complementarity Problem (LCP) is om-
nipresent in rigid body contact problems. Simulation robust-
ness and performance are directly affected by the particular
solver employed: important considerations include running-
time, solution quality, and reliability. This work seeks a sys-
tematic, comparative understanding of the available solvers
applied to contact problems.

Dynamic robotic simulation has the potential to be one of
the roboticist’s greatest tools. As a via point between purely
kinematic simulations and physically situated robotic exper-
iments, dynamic simulation fills important roles in testing
and debugging robot code and providing substrates for robot
learning. However, effective dynamic robotic simulation has
remained largely limited to applications with limited or no
contact. Though reports of simulating robots with contact
exist in the literature, practical difficulties abound before
such simulation becomes simple, robust, and ubiquitous.

One of the greatest obstacles toward practical dynamic
robotic simulation with contact lies with the nonlinear op-
timization solvers used to solve multi-rigid body contact
problems. Though the contact models to which such algo-
rithms are applied are solvable in theory, experience indicates
the solvers are prone to failure. These failures can lead to
interpenetrating rigid bodies (from which recovery is difficult
or impossible), simulations becoming unstable, and sliding
(rather than sticking) contacts. The practical effects of these
failures are robots that “sink” into the ground, simulations
that crash, and objects that slip out of grippers.

The failures of nonlinear optimization codes on multi-
rigid body simulation contact problems can be placed into
two categories: failures to produce any solution and failures
to produce a solution with residual error below a desired
tolerance. Both kinds of failures can lead to the deleterious
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phenomena discussed above, though the latter failures may
be less critical on simulations running at shorter timescales.
That failures occur raises a number of questions: Can the
factors that lead to failure be identified and mitigated? Are
some algorithms for solving these contact problems more
effective than others? Are some contact models (i.e., convex
vs. non-convex models) more amenable to solution?

II. BACKGROUND

LCPs have been used to model rigid body contact scenar-
ios since the works of Löstedt [1], Moreau [2], and Baraff [3].
The most influential work in this area (measured by presence
in current rigid body simulation libraries) is that of Stewart
and Trinkle [4], [5] and Anitescu and Potra [6], [7].

State of the art methods for modeling multiple simulta-
neous contacts in robotic simulation, including the works of
Stewart and Trinkle [4], [5], Anitescu and Potra [6], [7], and
Drumwright and Shell [8], [9] use nonlinear programming to
solve for unknown contact impulses. The solution methods
differ considerably, however: solving models from the first
two groups requires special algorithms (methods for LCPs
with copositive matrices1). Any algorithm capable of solving
monotone LCPs (equivalent to convex quadratic programs)
is suitable for the methods of Drumwright and Shell.2

III. SOLVING LCPS

The particular contact model employed dictates the set of
feasible LCP algorithms. We describe some algorithms for
solving LCPs in the next section.

A. Linear complementarity problem solvers

By the concept of Lagrangian duality derived from the
KKT conditions, every quadratic program (QP) is equiva-
lent to an LCP: methods developed toward solving either
problem are applicable to both. We describe some prominent
algorithms for solving LCPs (and QPs by extension) below:

1) Pivoting solvers: A number of pivoting solvers, in-
cluding (but not limited to) those of Dantzig and Cottle
[10], [11], Murty [12], and Lemke [13], operate under
the pivoting principle introduced by the Simplex algorithm.
Every pivoting algorithm solves a particular class of LCP:

1A real matrix is copositive if xTAx ≥ 0, ∀x ≥ 0. The set of copositive
matrices includes the set of positive-definite matrices.

2In this work, we assume that all contact models employ linearized
friction cones to facilitate comparison: if circular or elliptical friction cones
are used instead, Drumwright and Shell [9] require an algorithm for solving
convex quadratically constrained quadratic programs while Stewart and
Trinkle [5] require an algorithm for solving nonlinear complementarity
problems.
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Dantzig and Cottle’s method solves LCPs with P-matrices
(matrices with positive principal minors) and positive semi-
definite matrices, Murty’s least-index method solves prob-
lems with P-matrices, and Lemke’s algorithm solves LCPs
with semimonotone matrices (a large class of matrices that
includes copositive matrices, matrices with non-negative
diagonals, and matrices with non-negative principal minors).
One disadvantage of pivoting schemes is that an exponential
number of pivoting operations may be required (LCPs can be
constructed to exhibit this behavior for any possible pivoting
rule), though n pivoting operations are expected for an order
n LCP with the algorithms above [14]. We use Lemke’s al-
gorithm in our experiments with pivoting algorithms because
it is widely available in various implementations and because
it is capable of solving a large class of problems.

2) Interior-point solvers: Interior-point solvers, also
known as barrier methods [15], combine Newton’s method
for unconstrained optimization with a logarithmic barrier
in the objective function to prevent constraint violation.
Interior-point methods are often faster for QPs with many
variables and constraints than active-set methods (algorithms
that track the subset of the m inequality constraints gi(x) ≥
0, i ∈ 1 . . .m for which gi(x) = 0) for QPs and pivoting
methods for LCPs [16]. Interior-point methods exhibit worst-
case polynomial complexity on convex nonlinear optimiza-
tion problems [15].

3) PATH: PATH [17] is a free, closed source, commercial
quality solver for mixed complementarity problems (i.e.,
combined equality constraints with both LCPs and nonlin-
ear complementarity problems). PATH employs a stabilized
Newton method for solving these complementarity problems
via a formulation as a set of nonlinear equations. The use
of PATH for solving multi-rigid body contact problems is
frequently reported in the literature (e.g., [18], [19], [20]).

4) Iterative solvers: Iterative methods are most advan-
tageous for large, sparse LCPs and QPs. We initially ex-
perimented with projected successive overrelaxation (SOR)
splitting method [21], [14] for solving monotone and copos-
itive LCPs. Although convergence for iterative methods is
guaranteed only for LCPs with symmetric, strictly coposi-
tive matrices [21], such approaches are popular for solving
“harder” LCPs with bisymmetric copositive matrices (e.g.,
the rigid body simulation library ODE uses this approach in
its “quick step” method) due to potential for rapid conver-
gence. Lacoursiére’s extensive numerical experiments [22]
on splitting methods for frictional contact problems indicate
the difficulty of employing such approaches in this appli-
cation. Performance of these approaches on our randomly
generated contact problems was so poor (solution rates below
50% by our criteria and high error residuals) that we cannot
recommend employing such solvers in robotics applications.

B. Regularization

Though a LCP may be solvable in theory by one or
more of the algorithms above, an implementation may fail
to solve it in practice due to numerical issues. In such cases,
a regularization strategy that trades some solution error for

Algorithm III.1 Generation of monotone LCPs correspond-
ing to random contact problems
Input:

The class of generalized inertia matrix, either
reduced-rank or full-rank.

Output:
An LCP(q,M) where M is positive semi-definite.

1: Select # of generalized coordinates (ngc) uniformly from
integers [6, 15]

2: Select # of contact points (nc) uniformly from integers [2, 20]
3: Select # of redundant contacts (nrc) uniformly from integers

[0, nc − 1]
4: Generate ngc-dimensional vector (v) with each component
vi ∼ U(−1, 1).

5: Generate ngc × nc matrix (N) with each component
nij ∼ U(−1, 1).

6: Randomly introduce nrc linearly dependent columns into N
using integral combinations of the (nc − nrc) linearly inde-
pendent columns.

7: Generate ngc×ngc symmetric generalized inertia matrix (G),
depending on class:

8: if class = full-rank then
9: Set G to the positive definite matrix generated though

summing ngc rank-1 updates.
10: else if class = reduced-rank then
11: Select rank of the generalized inertia matrix (k) uniformly

from integers [6, ngc]
12: Set G to the positive semi-definite matrix generated though

summing k rank-1 updates.
13: Return the LCP(NTv,NTG?N).

Definitions:
• A rank-1 update to n× n matrix A is A← αxyT +A.
• Here A? denotes a SVD-regularized inverse of A.

solubility is advisable. Cottle [14] describes a strategy for
regularization that is identical to the Tikhonov regularization
[23] method for least squares problems. This approach adds
a small diagonal matrix (typically εI) to the LCP matrix.

IV. EXPERIMENTS

The experiments that we describe in this section were
based on the observation that we can create random contact
problems even though we are presently unable to pro-
vide a corresponding physical scenario (kinematics of the
mechanism or robot, geometric description of the bodies in
contact): in general, there are no constraints on the contact
Jacobians of a contact problem (i.e., no special matrix struc-
ture), nor are there differential constraints on the generalized
velocities of the bodies in a rigid body contact problem.
Indeed, the only constraints present in a multi-rigid body
contact problem are the symmetry and positive-definiteness
of the generalized inertia matrix and the non-negativity of the
coefficients of friction. Otherwise, both the dimensionality
and range of values of the matrices and vectors in a contact
problem can be determined randomly.

20,000 trials were conducted for each of the experiments
listed below. Future work will attempt to assess the margin
of error of our sample size (uncountable population size
precludes the use of standard tools from sampling theory).
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Algorithm IV.1 Generation of copositive LCPs correspond-
ing to random contact problems
Input:

The class of generalized inertia matrix, one of either
reduced-rank or full-rank.

Output:
An LCP(q,M) where M is copositive; that is for all
non-negative vectors v, vTMv ≥ 0.

1: Select # of generalized coordinates (nc) uniformly from inte-
gers [6, 15]

2: Select # of contact points (ngc) uniformly from integers [2, 20]
3: Select # of polygon edges in the friction cone (nk) uniformly

from even integers [4, 24]
4: Generate nc-dimensional vector (µ) with each component
µi ∼ U(0, 1).

5: Generate ngc-dimensional vector (v) with each component
vi ∼ U(−1, 1).

6: Generate ngc × nc matrix (N) with each component
nij ∼ U(−1, 1).

7: Generate ngc × (ncnk) matrix (D) with each component
dij ∼ U(−1, 1). The matrix D is constructed such that, for
every column d, the column −d also appears in D.

8: Randomly make some columns of N (and corresponding
columns of D) linearly dependent.

9: Generate ngc×ngc symmetric generalized inertia matrix (G),
depending on class:

10: if class = full-rank then
11: Set G to the positive definite matrix generated though

summing ngc rank-1 updates.
12: else if class = reduced-rank then
13: Set k to the rank of the generalized inertia matrix. Draw k

uniformly from integers [6, ngc]
14: Set G to the positive semi-definite matrix generated though

summing k rank-1 updates.
15: Return the LCP as in Anitescu-Potra [6].

A. Evaluation criteria

We evaluate each solver with respect to three criteria:
solubility, running time, and normal constraint violation
(i.e., the velocity that the bodies are moving toward one
another in the normal direction using a given solution).
Solubility is the most difficult of the three criteria to define
strictly; for example, a solver may report success on a given
contact problem, yet the solution it provides would lead
to significant interpenetration. We mark a contact problem
as solved if the change in work and constraint violation
that would result from application of the determined forces
are less than 1e−3J and 1e−3m/s, respectively. Thus, if
either a significant gain in simulation kinetic energy or
significant movement toward interpenetration would result,
we classify a “solution” as a failure. Although these are
arbitrary thresholds, they do permit comparisons of relative
performance between the examined methods.

B. Solver implementation details and parameterization

Numerical algorithms invariably use one or more tolerance
parameters. We searched extensively over the usable range
of parameters (described below) for each solver to evaluate
its performance using its best parameterization as well as

Monotone LCP Solution Frequency
Parameterization

E
x. Method Worst Average Best

1 Lemke 92.71% 97.59% 100.0%
1 PATH 97.48% 98.68% 99.27%
1 IP 99.90% 100.0% 100.0%
2 Lemke 79.73% 93.13% 100.0%
2 PATH 93.92% 94.80% 97.28%
2 IP 96.74% 96.75% 96.77%
3 Lemke 62.90% 63.57% 64.09%
3 PATH 61.81% 63.47% 63.93%
3 IP 63.70% 63.71% 63.72%
4 Lemke 55.83% 67.55% 73.25%
4 PATH 67.91% 68.95% 72.56%
4 IP 65.49% 65.61% 65.67%
5 Lemke [1, 105] 69.89% 88.91% 100.0%
5 [1, 108] 59.35% 84.74% 99.99%
5 [1, 1010] 54.05% 81.57% 99.94%
5 PATH [1, 105] 94.07% 95.30% 99.20%
5 [1, 108] 94.03% 95.51% 99.19%
5 [1, 1010] 91.72% 92.99% 96.99%
5 IP [1, 105] 87.34% 87.54% 87.65%
5 [1, 108] 74.86% 75.05% 75.15%
5 [1, 1010] 70.41% 70.61% 70.74%
6 Lemke [1, 105] 94.13% 98.87% 100.0%
6 [1, 108] 78.85% 95.93% 100.0%
6 [1, 1010] 71.10% 92.87% 99.99%
6 PATH [1, 105] 98.82% 99.79% 99.92%
6 [1, 108] 98.58% 99.66% 99.87%
6 [1, 1010] 96.81% 97.94% 98.17%
6 IP [1, 105] 88.26% 88.35% 88.41%
6 [1, 108] 75.69% 75.91% 75.97%
6 [1, 1010] 71.30% 71.49% 71.60%

TABLE IV.1
SUMMARY OF SOLVER PERFORMANCE ACROSS SETS OF MONOTONE

LCPS FOR THE SIX EXPERIMENTS. BEST AND WORST COLUMNS GIVE

SOLUTION FREQUENCY FOR THE PARAMETERIZATION WITH THE

GREATEST AND LEAST SUCCESS, RESPECTIVELY. AVERAGE SOLUTION

FREQUENCY IS OVER TOTAL RANGE OF EXAMINED PARAMETERS.

discern the importance of parameter selection for a solver.
The maximum number of iterations for each solver is

configurable. We limited every solver to max (1000, n2)
iterations where n is the order of the LCP.

1) Lemke’s algorithm: Our implementation of Lemke’s
algorithm is a direct translation of the LEMKE code [24]
from Matlab to C++. This code uses a “pivoting” tolerance
(used to identify potential pivots) and a “zero” tolerance
(used to determine minimal ratios for pivoting). Parameter
selection ranged from 1e−20 to 1e−4 with steps of 1e+2.

2) Interior-point method: The interior-point method em-
ployed in the experiments is our implementation of the
primal-dual method described in [15] (i.e., we applied a stan-
dard convex programming approach to the Lagrangian dual
of the LCP rather than using, e.g., the method described by
Cottle [14]). More sophisticated implementations could yield
lower running time and higher solubility. Our implementation
uses two parameters, ε and εfeas, which represent the general
solution tolerance and the solution tolerance for feasibility.
Parameter selection range from 1e−20 to 1e−4 with steps of
1e+6 (parameter search was more coarse than that of the
other solver implementations due to the considerably longer
running times of the interior-point solver).

3) PATH: The PATH solver utilizes a single “conver-
gence” parameter, which ranged from 1e−20 to 1e−4 using
an iteration step of 1e+2 in our experiments .
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C. Experiment 1: establishing a baseline

We used full-rank generalized inertia matrices and contact
normal and tangent Jacobian matrices (i.e., N and D) with
full row rank to establish baseline LCP solver performance
on the randomly generated contact problems.

An n × n inertia matrix is generated using a summation
of n randomly generated rank-1 updates to the zero matrix.
The contact normal and tangent Jacobian matrices are filled
with values randomly selected from the interval [−1, 1] (with
the provision that, for every column vector d in the tangent
Jacobian, the vector −d is also present in that Jacobian).

Note that when there are more contact points than gen-
eralized coordinates, the matrix NTG−1N—which is used
in both the monotone and copositive contact problems—will
be rank-deficient even when both N and G are of full rank.

D. Experiment 2: full rank generalized inertia matrices,
reduced row rank contact Jacobians

The solution existence guarantee for the Anitescu-Potra
contact model depends on the contact normal and tangenti
Jacobian matrices (i.e., N and D) having full row rank [6].
Our initial hypothesis was that failure of these matrices to
have full row rank—resulting from the common existence of
“redundant” contacts—might be responsible for most solver
failures. This hypothesis follows from the observation that
the matrix NTG−1N, which is employed in both algorithms,
is singular when N does not have full row rank.

A reduced row rank contact Jacobian was produced by
making the randomly-selected dependent rows an integral
combination of the independent rows. The same independent
and dependent row indices were used to compose both the
normal and tangent contact Jacobians for a given trial.

E. Experiment 3: reduced rank generalized inertia matrices,
full row rank contact Jacobians

This experiment tested the hypothesis that the generalized
inertia matrix is the factor most influencing LCP solver
failure. Experiment 3 additionally sought to determine a
lower limit on the performance of LCP solvers on multi-rigid
body contact problems: generalized inertia matrices may be
poorly conditioned but should never truly be rank deficient.

Contact Jacobian matrices were produced as described in
Experiment 1. Each reduced rank generalized inertia matrix
was produced by summing r < n randomly generated rank-1
updates to the n× n zero matrix.

F. Experiment 4: reduced rank generalized inertia matrices,
reduced row rank contact Jacobians

This experiment tested the combined effect of reduced
rank in both generalized inertia matrices and contact Jacobian
matrices. Generalized inertia matrices were constructed as
described in Experiment 3, and contact Jacobians were
constructed as described in Experiment 2.

Copositive LCP Solution Frequency
Parameterization

E
x. Method Worst Average Best

1 Lemke 77.09% 91.08% 100.0%
1 PATH 67.21% 67.71% 67.82%
2 Lemke 53.35% 82.14% 99.91%
2 PATH 65.18% 66.29% 66.57%
3 Lemke 34.42% 36.38% 37.54%
3 PATH 27.07% 27.17% 27.20%
4 Lemke 26.99% 37.61% 43.16%
4 PATH 31.15% 31.30% 31.45%
5 Lemke [1, 105] 52.85% 80.98% 99.94%
5 [1, 108] 48.24% 75.45% 99.84%
5 [1, 1010] 42.95% 70.88% 99.72%
5 PATH [1, 105] 67.44% 67.66% 67.72%
5 [1, 108] 67.75% 68.02% 68.14%
5 [1, 1010] 61.61% 62.20% 62.44%
6 Lemke [1, 105] 82.47% 95.99% 100.0%
6 [1, 108] 73.84% 91.32% 99.97%
6 [1, 1010] 66.03% 85.97% 99.87%
6 PATH [1, 105] 67.62% 67.63% 67.64%
6 [1, 108] 67.79% 67.90% 67.93%
6 [1, 1010] 63.38% 63.62% 63.70%

TABLE IV.2
SUMMARY OF SOLVER PERFORMANCE ACROSS SETS OF COPOSITIVE

LCPS FOR THE EXPERIMENTS. BEST AND WORST COLUMNS GIVE

SOLUTION FREQUENCY FOR THE PARAMETERIZATION WITH THE

GREATEST AND LEAST SUCCESS, RESPECTIVELY. AVERAGE SOLUTION

FREQUENCY IS OVER TOTAL RANGE OF PARAMETERS CONSIDERED.

G. Experiment 5: generalized inertia matrices with eigenval-
ues in intervals [1, 105], [1, 108], and [1, 1010], rank-deficient
contact Jacobians

Tables IV.1 and IV.2, which summarize solubility on the
previous experiments, show that the rank of the generalized
inertia matrix is a much greater factor in LCP solubility than
the row rank of the contact Jacobian matrices. As stated
above, generalized inertia matrices should never truly be
rank deficient. Accordingly, Experiment 5 gauges the effect
of poorly conditioned inertia matrices on LCP solubility.
We test solver performance on problems with generalized
inertia matrices with eigenvalues ranging from [1, 105], from
[1, 108], and from [1, 1010] (yielding condition numbers of
105, 108, and 1010, respectively). Matrices with such condi-
tion numbers can arise due to large disparities in moments-
of-inertia (which are dependent upon both the distribution
and magnitude of a body’s mass), even if there are not
disparities of orders of magnitude between bodies’ masses.

We generate inertia matrices with these condition numbers
by starting with summation of n randomly generated rank-1
updates to an n × n zero matrix. A decomposition of this
matrix yields the n-dimensional vector of eigenvalues λ and
an n × n matrix Q with columns composed of linearly
independent eigenvectors. We then exponentially scale the
eigenvalues into the desired interval. We compose the inertia
matrix through the operation3 QΛQ−1, where Λ is the
diagonal matrix composed from the elements of λ.

H. Experiment 6: effect of regularization

Experiment 6 constructs problems identically to Exper-
iment 5 but employs regularization in the LCP solver as
necessary to boost solubility. Thus, Experiment 6 indicates

3This operation is consistent with the spectral theorem for matrices.
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the expected solubility and running time on practical multi-
rigid body contact problems with state of the art solvers.

V. RESULTS AND OBSERVATIONS
Our experimental results are summarized in Tables IV.1–

IV.6. The large volume of experimental results stymies
attempts at visualization and hampers discernment of trends
from tabulated data. To enhance data presentation, we pro-
vide running times and constraint violation for only Exper-
iment 6 in Tables IV.3–IV.6. We rationalized that only Ex-
periment 6 reflects both results with regularized algorithms
and expected (i.e., ill-conditioned but full rank generalized
inertia matrices and reduced-rank contact Jacobians) data.
Tables IV.1–IV.6 yield the following observations:

• Contact problems corresponding to monotone LCPs
are “easier” to solve (evinced by higher success rate)
than copositive LCPs. This result argues in favor of
convex contact models, as advocated in [9], even though
regularization mitigates much of this advantage (at cost
of significant additional running time).

• Reducing the rank of the contact Jacobians lowers the
solubility of the problem. If the rank of the generalized
inertia matrix is reduced instead, the solubility of the
problem is lowered much further. However, the solu-
bility of the reduced rank for both is counterintuitively
higher than the case of reduced rank generalized inertia
and full rank contact Jacobian matrices (i.e., solubility
results for Experiment 4 are, in general, considerably
higher than those for Experiment 3).

• With respect to solubility, LEMKE is the best solver.
Our interior-point solver is not recommended for solu-
bility or running time (at least on these problem sizes),
though it is extremely robust with respect to parameter
selection.

• With regard to all evaluation criteria (solubility, running
time, and constraint violation), PATH performs better
over a wider range of parameters than LEMKE.

• LEMKE’s running time is significantly faster than that
of PATH on the monotone LCPs, yet it runs significantly
more slowly on the generated copositive LCPs.

• Constraint violation performance of PATH vs. LEMKE
is comparable on average. In the worst cases (those
reported in the “max” column under the best parameteri-
zations in Tables IV.5 and IV.6), LEMKE performs con-
siderably better than PATH on the monotone problems
and considerably worse on the copositive problems.

Finally, we note that the ceilings on generalized coordinate
dimension (15) and numbers of contact points (20)—selected
to make the experiments tractably computable—do have
(limited) effect on solubility. In an additional experiment that
raised both ceilings to 100, applying LEMKE to copositive
LCP contact problems with condition numbers distributed in
[1, 1010] (i.e., constructed in the manner of Experiment 5),
maximum solubility reduced to 91.77% (from 99.72%).
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Running times for solution of various Monotone LCPs
Best Parameterization All Parameterizations

E
x. Method Mean (σ) Max Mean (σ) Max

6 Lemke [1, 105] 1.40 × 10−4 (0.001) 0.03 3.93 × 10−4 (0.004) 0.64

1.40 × 10−4 (0.001) 0.03 4.20 × 10−4 (0.004) 0.64

[1, 108] 1.90 × 10−4 (0.001) 0.02 4.63 × 10−4 (0.006) 0.78

1.90 × 10−4 (0.001) 0.02 5.28 × 10−4 (0.006) 0.78

[1, 1010] 1.88 × 10−4 (0.001) 0.01 4.05 × 10−4 (0.003) 0.34

1.88 × 10−4 (0.001) 0.01 5.50 × 10−4 (0.004) 0.44

6 PATH [1, 105] 8.67 × 10−4 (0.003) 0.05 1.92 × 10−3 (0.006) 0.10

8.67 × 10−4 (0.003) 0.05 1.92 × 10−3 (0.006) 0.10

[1, 108] 1.07 × 10−3 (0.003) 0.06 2.16 × 10−3 (0.007) 0.09

1.08 × 10−3 (0.003) 0.06 2.38 × 10−3 (0.008) 0.12

[1, 1010] 1.76 × 10−3 (0.006) 0.11 2.37 × 10−3 (0.007) 0.12

3.42 × 10−3 (0.014) 0.15 4.53 × 10−3 (0.016) 0.16

6 IP [1, 105] 4.13 × 10−1 (1.185) 20.12 4.11 × 10−1 (1.186) 20.26
1.09 (3.291) 25.66 1.09 (3.290) 25.84

[1, 108] 3.84 × 10−1 (0.819) 13.93 3.70 × 10−1 (0.815) 14.29
2.59 (5.067) 28.22 2.58 (5.068) 28.26

[1, 1010] 3.12 × 10−1 (0.735) 17.89 2.97 × 10−1 (0.731) 17.93
3.13 (5.521) 27.21 3.12 (5.524) 27.27

Key: Plain Row=Timing for Solved LCPs / Shaded Row=Timing for All LCPs

TABLE IV.3
SUMMARY OF SOLVER SPEED ON MONOTONE

LCPS FOR EXPERIMENT 6. MEAN, STANDARD

DEVIATION, AND MAXIMUM RUNNING TIMES

ARE REPORTED FOR BOTH THE

PARAMETERIZATION WHICH SOLVED THE

GREATEST NUMBER OF PROBLEMS (LABELED

BEST) AND OVER ALL PARAMETERIZATIONS.
ROWS SHADING DISTINGUISH BETWEEN

STATISTICS FOR PROBLEMS IN WHICH A

SOLUTION WAS FOUND (WHITE), AND ALL

PROBLEMS ATTEMPTED (SHADED).

Running times for solution of random copositive LCPs
Best Parameterization All Parameterizations

E
x. Method Mean (σ) Max Mean (σ) Max

6 Lemke [1, 105] 5.94 × 10−1 (2.018) 47.54 1.41 (15.212) 1781.61

6.53 × 10−1 (2.209) 47.54 1.80 (15.961) 1781.61

[1, 108] 6.67 × 10−1 (1.249) 7.09 1.61 (7.149) 262.66

9.02 × 10−1 (2.541) 28.84 2.61 (9.620) 262.66

[1, 1010] 5.16 × 10−1 (1.167) 8.35 1.24 (7.266) 346.54
1.02 (5.576) 111.53 2.48 (11.006) 346.54

6 PATH [1, 105] 1.47 × 10−2 (0.043) 0.82 1.66 × 10−2 (0.059) 2.94

3.65 × 10−2 (0.285) 6.08 3.92 × 10−2 (0.290) 6.23

[1, 108] 5.29 × 10−2 (0.468) 7.78 5.07 × 10−2 (0.437) 11.35

8.88 × 10−2 (0.570) 7.78 1.19 × 10−1 (0.918) 27.79

[1, 1010] 2.38 × 10−2 (0.173) 2.79 3.51 × 10−2 (0.423) 20.02

2.21 × 10−1 (1.867) 34.32 3.34 × 10−1 (3.076) 81.01

Key: Plain Row=Timing for Solved LCPs / Shaded Row=Timing for All LCPs

TABLE IV.4
SUMMARY OF SOLVER SPEED ON COPOSITIVE

LCPS FOR EXPERIMENT 6. MEAN, STANDARD

DEVIATION, AND MAXIMUM RUNNING TIMES

ARE REPORTED FOR BOTH THE

PARAMETERIZATION WHICH SOLVED THE

GREATEST NUMBER OF PROBLEMS (LABELED

BEST) AND OVER ALL PARAMETERIZATIONS.
ROWS SHADING DISTINGUISH BETWEEN

STATISTICS FOR PROBLEMS IN WHICH A

SOLUTION WAS FOUND (WHITE), AND ALL

PROBLEMS ATTEMPTED (SHADED).

Constraint violation (along the contact normal) for solved monotone LCPs
Best Parameterization All Parameterizations

E
x. Method Mean (σ) Max Mean (σ) Max

6 Lemke [1, 105] 7.13 × 10−10 (2.89 × 10−8) 1.72 × 10−6 1.72 × 10−7 (1.01 × 10−5) 9.67 × 10−4

[1, 108] 9.75 × 10−9 (3.74 × 10−7) 2.27 × 10−5 5.33 × 10−7 (1.14 × 10−5) 9.82 × 10−4

[1, 1010] 4.39 × 10−7 (1.10 × 10−5) 6.70 × 10−4 1.35 × 10−6 (2.26 × 10−5) 9.61 × 10−4

6 PATH [1, 105] 7.50 × 10−8 (1.77 × 10−6) 1.12 × 10−4 4.15 × 10−7 (1.09 × 10−5) 7.60 × 10−4

[1, 108] 6.06 × 10−8 (2.66 × 10−7) 1.42 × 10−5 5.84 × 10−7 (1.31 × 10−5) 7.44 × 10−4

[1, 1010] 4.27 × 10−7 (1.44 × 10−5) 6.70 × 10−4 9.28 × 10−7 (2.09 × 10−5) 9.07 × 10−4

6 IP [1, 105] 3.57 × 10−7 (8.83 × 10−6) 2.84 × 10−4 3.57 × 10−7 (8.83 × 10−6) 2.84 × 10−4

[1, 108] 8.23 × 10−7 (1.90 × 10−5) 9.47 × 10−4 8.23 × 10−7 (1.90 × 10−5) 9.47 × 10−4

[1, 1010] 1.91 × 10−5 (8.22 × 10−5) 9.95 × 10−4 1.91 × 10−5 (8.22 × 10−5) 9.95 × 10−4

TABLE IV.5
SUMMARY OF MONOTONE LCP SOLUTION QUALITY FOR EXPERIMENT 6. MEAN, STANDARD DEVIATION, AND MAXIMUM VALUES OF THE NORMAL

CONSTRAINT VIOLATION ARE REPORTED FOR BOTH THE PARAMETERIZATION WHICH SOLVED THE GREATEST NUMBER OF PROBLEMS AND OVER ALL

PARAMETERIZATIONS.

Constraint violation (along the contact normal) for solved copositive LCPs
Best Parameterization All Parameterizations

E
x. Method Mean (σ) Max Mean (σ) Max

6 Lemke [1, 105] 4.69 × 10−6 (4.51 × 10−5) 8.58 × 10−4 2.56 × 10−6 (3.01 × 10−5) 9.08 × 10−4

[1, 108] 4.72 × 10−6 (5.68 × 10−5) 9.81 × 10−4 2.77 × 10−6 (3.50 × 10−5) 9.81 × 10−4

[1, 1010] 4.64 × 10−7 (3.23 × 10−6) 4.85 × 10−5 4.44 × 10−6 (4.91 × 10−5) 9.55 × 10−4

6 PATH [1, 105] 3.79 × 10−8 (1.09 × 10−7) 9.93 × 10−7 8.79 × 10−8 (4.52 × 10−6) 4.22 × 10−4

[1, 108] 5.84 × 10−8 (1.35 × 10−7) 7.50 × 10−7 1.66 × 10−7 (4.79 × 10−6) 2.58 × 10−4

[1, 1010] 8.04 × 10−8 (1.77 × 10−7) 1.23 × 10−6 4.70 × 10−7 (1.59 × 10−5) 9.62 × 10−4

TABLE IV.6
SUMMARY OF COPOSITIVE LCP SOLUTION QUALITY FOR EXPERIMENT 6. MEAN, STANDARD DEVIATION, AND MAXIMUM VALUES OF THE NORMAL

CONSTRAINT VIOLATION ARE REPORTED FOR BOTH THE PARAMETERIZATION WHICH SOLVED THE GREATEST NUMBER OF PROBLEMS AND OVER ALL

PARAMETERIZATIONS.
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