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Abstract— Marine robots and unmanned surface vehicles will
increasingly be deployed in rivers and riverine environments.
The structure produced by flowing waters may be exploited
for purposes of estimation, planning, and control. This paper
adopts a widely acknowledged model for the geometry of
watercourse channels, namely sine-generated curves, as a basis
for estimators that predict the shape of the yet unseen portion
of the river. Predictions of this sort help a robot anticipate
the future, for example, in throttling speeds as it rounds a
bend. After examining how to reparameterize standard filters
to incorporate this model, we compare the performance of
three Gaussian filters and show that nonideality and theoretical
challenges (of non-linearity, multi-modality/periodicity) degrade
the performance of standard Kalman filters severely, but can
be successfully mitigated by imposing an interval constraint.
Thereafter, we present results of a constrained interval Kalman
filter on data from three natural rivers. The results we report
show the effectiveness of our method on the estimation of
meander parameters. The results we report, including data
from simulation, from maps, and from GPS tracks of a boat
on the Colorado river, show the effectiveness of our method on
the estimation of meander parameters.

I. INTRODUCTION

Autonomous surface vehicles are increasingly being used
on rivers. Riverine environments present many interesting
and important opportunities because they are arteries car-
rying fresh water—a precious and all-too-scarce resource;
because they are sites of ecological diversity—including
unique fauna and flora; and because they are corridors
of commerce—several rivers are of especial historical and
cultural significance. But streams and rivers pose significant
difficulties too. As Synder et al. [7] observe “prior map
information on water hazards and obstacles is not depend-
able and does not have the accuracy needed for precision
navigation and sensor directed reconnaissance.” Since occlu-
sion increases uncertainty, meanders, in particular, present
challenges because they hamper long-distance observation.
Inevitably, watercraft navigating a river for the first time have
only limited understanding of stretches of water lying ahead.

Fortunately, meandering rivers possess considerable reg-
ularity. Meanders are well-characterized by sine-generated
curves, where the angular direction at any point is a sine
function of the distance measured along the channel [3]. This
work explores how this model can serve as a foundation for
estimators that fuse observations to make predictions of the
shape of unseen portions of the river (see Fig. 1). Essen-
tially, the model provides a parsimonious state space over
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Fig. 1. This paper formulates and compares estimators that model river
meanders to predict the shape of the channel ahead of the robot. Such
estimates could be helpful in picking trajectories for the controller to track.

which our filters operate and this representational economy
translates into efficiency. We envision that the estimate could
be valuable for making control decisions, e.g., in selecting
reference trajectories or paths for a controller to track, or,
more simply, in slowing the vehicle as it approaches a bend.
Predictions of river geometry can provide rich information
especially when combined with other domain knowledge.
Much that is useful for navigation can be gleaned, as
illustrated by the following passage:

“River boatmen navigating upstream on a large river
face the problem that the deepest water, which they
usually prefer, tends to coincide with the streamline of
highest velocity. Their solution is to follow the thalweg
(the deepest part of the river, from the German for ‘valley
way’) where it crosses over the center line of the channel
as the channel changes its direction of curvature but to
cut as close to the convex bank as possible in order to
avoid the highest velocity near the concave bank.” [3]

As readers may anticipate, the periodic nature of the model
presents some challenges for a standard extended Kalman
filter. Indeed this is the case and, as will be clearly shown,
these issues affect performance in practice. First we adopt
a parameterization of meander geometry (Section III) and
then to examine how classical filters behave using the model.
This analysis, which we report in Section IV-A, involved
comparison of the performance of three Gaussian filters in
tracking and predicting the river’s centerline. It led us to
recognize the importance of constraining the estimate to a
single period in order to guarantee unimodality. Thereafter,
we investigated the performance of the superior, constrained
filter on data from three natural rivers (Sections IV-B–V).
But next we discuss relationships to the existing literature.



II. RELATED WORK

A. Models of river meanders

Langbein and Leopold [3] first proposed the sine-
generated curve model of river meanders, formalized as:

θ(s) = A sin

(
2πs

M

)
, (1)

where θ(s) is the angle in radians between the direction of
flow and the mean down-valley direction. The latter direction
is a reference axis, pointing downstream and oriented along
the centerline of the meandering pattern; as the name indi-
cates, it reflects the broad slope of the land. Note that θ(s) is
a function of the maximum angle A in radians, spatial period
per meander M in meters and s, which is the distance along
river from the apex of a left-hand bend in meters. This form
was proposed because it minimizes the sum of squares of
change in direction and also total work in bending.

Thakur and Scheidegger [9] examined the statistical dis-
tribution of angles of deviation with the mean down-valley
direction a few years later. They confirmed that the angles of
deviation in rivers are normally distributed. Their evidence
provides support for the sine-generated curve model and also
hints toward its aptness as a representation for estimation.

Much more recently, Mecklenburg and Jayakaran [4], to
sidestep the highly nonlinear sine-generated curve, proposed
a new arc-and-line meander pattern that represents the me-
ander pattern with connecting arcs and lines; such a model,
while perhaps easier to fit to geological data, does not
provide an obvious state space description—unfortunately
making it rather more complicated for our purposes.

B. Estimators from a constrained vs. unconstrained opti-
mization perspective

A vast panoply of Bayesian filters have been proposed
for parameter estimation. The present paper, being the first
we are aware of to study the meander problem, begins by
applying standard estimation techniques. The Kalman filter,
a parametric recursive estimator for systems with Gaussian
uncertainty, seems like a good choice, especially given that
a Gaussian distribution is reported in [9]. However, as the
meander problem is not linear, we must turn to various
progeny of the classical Kalman filter.

For nonlinear systems, the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF) are the most com-
monly used Gaussian filters. At each iteration, both filters
are two-step estimators that include a prediction step and a
measurement update step. Compared to the EKF, the UKF
has comparable computational cost and has been shown to
yield more accurate results, at least to the second order of
the Taylor series [1]. The measurement update steps of both
filters, though rarely described this way, may be regarded as
the solution of an unconstrained optimization problem [12].

Additional information about the system can be integrated
into the design of filters by introducing constraints, restrict-
ing parts of the state space. Reviews of the state constraint
extensions to Kalman filters can be found in [6] and [8].

Fig. 2. A visualization of parameters A, D and M in (2).

Constraint Kalman filters can be classified into linear and
nonlinear types according to the system transition function
and measurement function. There are equality and inequality
constraint filters based on the types of constraints.

The unscented recursive nonlinear dynamic data reconcil-
iation (URNDDR) filter [11] improves the way that the EKF
obtains the updated state estimates by solving (numerically)
a constrained optimization problem and then updating the
state covariance by selecting sigma points and weights
much like the UKF. But, additionally, the URNDDR solves
a constrained optimization problem to ensure that any state
inequality constraints are satisfied in the sigma point updates.
Taken together, both the updated state estimate and error
covariance will satisfy state space constraint. Unfortunately
this comes at a cost: URNDDR involves substantially more
computation than the UKF and is sensitive to the performance
of the constrained optimization problem solver. For a four-
dimensional state space, at each iteration, the solver is run
nine times; moreover, estimation terminates if the solver fails
to find a solution.

A practical solution, and one which we adopt, is proffered
by the constraint interval unscented Kalman filter (CIUKF)
of Teixeira et al. [8]. It solves the constrained optimization
problem only for the sampled mean of the state distribu-
tion (cf. (11) below). But the CIUKF opts to weaken the
requirement for variances, using the standard UKF method
to obtain the state covariance. (Due to limited space, we
withhold details, but the description appears in full in [2].)

III. FORMULATION AND APPROACH

Estimating meander parameters using the model in (1)
requires the robot measure the mean down-valley direction
and start at the apex of a left-hand bend. These are unrea-
sonable requirements for an autonomous vehicle. Instead, by
including offset and scaling parameters, we proposed a new
function for the river’s centerline:

θ(s) = A sin(Bs+ C) +D, (2)

where s is the distance along the river from the robot’s initial
location; θ(s) is the angle between the direction of flow and
magnetic East in radians; A is the maximum angle in radians;
B is the spatial frequency in radians per unit length; C is
the phase shift in radians; D is the angle between the mean
down-valley direction and magnetic East. In addition to the
spatial frequency B, the spatial period M is computed as:

M =
2π

B
. (3)

Fig. 2 illustrates the parameters A, D and M .



A. Problem Formulation

Consider a river meander centerline that is well-
characterized by the following sine-generated curve in a
Cartesian coordinate system:

y1(s) =

∫ s

0

cos(θ(τ)) dτ + y1(0), (4)

y2(s) =

∫ s

0

sin(θ(τ)) dτ + y2(0), (5)

θ(s) = A sin(Bs+ C) +D. (6)

Collecting A, B, C and D into a single parameter vector to
be estimated, we define the state describing the river as:

x =
[
A B C D

]T
. (7)

We assume that the robot is equipped with sensors that can
measure the coordinates (y1(k), y2(k)) of locations along the
river’s centerline, a distance sk along river from an initial
point (y1(0), y2(0)), and the angle θk ∈ [−π, π) between the
direction of flow and magnetic East, where the subscript k
denotes the kth measurement. To simplify this problem, the
measurements of sk (distances along the river) are treated
as perfect and, therefore, sk ≤ sk+1. We are concerned
with θ at sk, but of which only an imperfect observation,
denoted θ̄k, can be made; we assume that its error, vk, is
normally distributed with zero mean and variance Rk. Since
we are assuming measurements of the watercourse centerline,
nothing need be assumed about the river width.

We desire an estimate of the parameters xk at a point
(y1(k), y2(k)) given spatially discrete sensor readings. With
these definitions in place, at each state k the river meander
estimation problem is formulated as follows.

PROBLEM 1: River Meander Estimation
Input: Prior belief of state N (x̂k−1, Pk−1)
Input: An observation N (θ̄k, Rk)
Input: Distance sk along the centerline from initial point
Output: Posterior belief of state N (x̂k, Pk)

B. Filter Design

The sine-generated curve model exhibits nonlinearity in
three of the four parameters [A B C D]T, none of which
are directly observable. Nevertheless, we wish to enable the
robot to estimate these parameters in real-time. The non-
linearity precludes a standard Kalman filter, so we began by
implementing EKF and UKF solutions.

The prior studies by geologists treat the sinusoidal param-
eters as fixed constants over the region of the river under
study. We expect that over long distances these parameters
may drift but, as we have no a priori transition model for
any of the four variables, we assume constant parameters for
each river. Of course, if other information is known it can
be incorporated too; we have

xk = Txk−1 + µk, (8)

where the transition matrix T is the 4×4 identity matrix I .
To account for gradual drift in the values, it is prudent to add
system process noise µk ∼ N (0, Qk) to the state transition

equation, where Qk is the process-noise covariance matrix.
(We have Qk as a diagonal matrix, because error of each
parameter is assumed to be independent.)

For the measurement update step of the filter, we choose
the meander direction angle θ̄k as the (sole) observed variable
because it has been confirmed to be normally distributed
[9]. The obvious alternative, using the Cartesian coordinates
of points on the meander centerline, does not have this
statistical property and, moreover, the measurement model
for the coordinates (see (4)–(5)) is complicated. In contrast
our measurement function is given by:

θ̄k = h(xk, sk) = A sin(Bsk + C) +D + vk, (9)

where vk ∼ N (0, Rk) is the measurement error. The
Jacobian matrix Hk for the observation model is given as:

Hk =
∂θ(s)

∂xk

∣∣∣∣
xk=x̂k|k−1,s=sk

= [sin(Bsk + C) AB cos(Bsk + C)

A cos(Bsk + C) 1]. (10)

Since Kalman filters, along with various extensions
thereto, represent belief over their state space with a multi-
variate normal distribution, they can do poorly (even break-
ing down) when the distribution is not unimodal [10]. Re-
grettably, the state space distribution of meander parameters
is not unimodal. The periodic nature of sine functions poses
a problem: even exact observations could confirm an infinite
number of values. For example, parameters [A B C D]T and
[A B (C+2nπ) D]T represent the same sine-generated curve
for any integer number n. The probabilistic analogue, thus,
has multiple modes. These infinite modes make it impossible
to approximate the state distribution as a single Gaussian or
a Gaussian Mixture [5]. We approach this problem by using
the CIUKF and constraining parameters to lie inside a single
period, thereby ensuring unimodality. (A proof that, given
the constraints, we have a unimodal distribution appears as
an Appendix in [2].)

We implement a CIUKF based on the algorithm given in
[8] and the system dynamics in (8) and (9). The posteriori
state estimate x̂k is computed by solving the constrained
optimization problem described in the following equation
numerically:

x̂k = arg min
{xk}

[
(θ̄k − h(xk, sk))T(Rk)−1(θ̄k − h(xk, sk))+

(xk − x̂k|k−1)T(P xx
k|k−1)−1(xk − x̂k|k−1)

]
subject to: xL < xk ≤ xU , (11)

where the observation model is given in (9).

IV. RESULTS

We report measures of estimator performance in three sep-
arate evaluations. We first consider simulations (Section IV-
A) where the ground truth is both known and is a true sine-
generated curve. Since the true parameters are known, we
can determine the error of the estimate exactly. Even in these
simplified circumstances, the EKF and UKF leave much to be
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Fig. 3. State weighted error of constraint interval unscented Kalman filter vs. Number of measurements. The EKF and UKF produce estimates that are
divergent. Plots show estimates of mean and variance computed from 30 independent simulations for each filter. Measurements are made every 5m, though
the three curves are of different scales. The horizontal axis is in units of the ground truth curve’s spatial period.

desired. The second and third evaluations involve estimation
on river meanders using map-based data (Section IV-B) and
GPS positions collected from a boat (Section IV-C). Though
these meanders are only approximately characterized by the
sine-generated curve model, the data show that the CIUKF is
able to provide useful predictions for the robot nevertheless.

A. Evaluation on sine-generated curves

For real rivers, one determines the scale of a meander
from its spatial period M . The longer the spatial period, the
larger the scale of the meander. Leopold and Langbein [3]
presented the data collected from two meanders of the
Mississippi River near Greenville, Mississippi (USA) and
the Blackrock Creek in Wyoming (USA) to illustrate their
model. Comparing the meander of the Mississippi River has
spatial period of about 20 miles, while Blackrock Creek is
of much smaller scale with a period of 700 feet. Here, we
choose three curves with different different scales to examine
the filter performance. The sine-generated curves c1, c2, c3,
have parameters:

xc1 =

[
1

2π

500

2π

3

π

4

]T
, (12)

xc2 =

[
1

2π

1000

2π

3

π

4

]T
, (13)

xc3 =

[
1

2π

2000

2π

3

π

4

]T
. (14)

The initial state and its covariance matrix are given as

β0 =

π/22π
1500
π/2
π/2

 , P0 =

1 0 0 0
0 0.01 0 0
0 0 1 0
0 0 0 1

 . (15)

The measurement covariance matrix R, the process co-
variance matrix Q, and the sampling distance ∆s, i.e., the
distance between two sequential measurements, were

R =
π

6
, ∆s = 5 m, and Q = 0.

The CIUKF lower and upper limits, xL and xU , were

xL = [0 0 0 0]T and xU = [2.2 0.1 2π 2π]T. (16)

The upper limit for parameter A was selected to be 2.2 rad
because the sine-generated curve model generates meanders

Fig. 4. After taking measurements (shown in blue) part of the way along the
Brazos River, 100 samples are drawn randomly from the CIUKF estimator’s
current state distribution. Main image takes samples up to 8995m from the
designated start, lower-left up to 3975m, and lower-right takes 12 957m.
These are plotted forward from this point to show predictions for the
still unseen portion of the river. The curve in yellow is the river’s actual
centerline that the robot has not observed yet. Transparency corresponds to
normalized probability of the sample.

with closed loops for values of A above approximately
2.2 rad, cf. [4]. And the upper limit for B is set to 0.1 m/rad,
since we ignore the meanders with spatial period less than
62.83 m. Error corrupted observation is introduced to the
filter by adding zero mean Gaussian error with standard
deviation of π/18 rad to the true measurements.

For all results reported in this paper, the filters were
initialized as described in this scenario, except that for
real data, no additional Gaussian noise was added to the
measurements, nor is the sampling distance treated as fixed.

A standard measure of performance in literature on the
Kalman filters and its extensions [6], [8] is the root-mean-
square error (RMSE) of each state. We found it necessary
to adopt a different indicator because the spatial frequency
parameter, B, has a much smaller order than the other param-
eters, especially for large-scale meanders, yet it affects the
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Fig. 5. Estimation quality of CIUKF on the Brazos River data. Left: (a)
Blue dots are data points and the solid orange line shows the estimator’s fit
after 225 measurements. Right: (b) State weighted error calculated as data
arrive (error estimated with all measurements used as ground truth).



Fig. 6. An analogous plot to that of Fig. 4 but for the L’Anguille River.
It is a substantially smaller watercourse. In the main image the samples are
drawn after 647m, for the lower-left after 369m, and for the lower-right
after 991m.
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Fig. 7. An analogous plot to that Fig. 5 but for the L’Anguille. Left: (a)
Blue dots are data points and the solid orange line shows the estimator’s fit
after 159 measurements. Right: (b) State weighted error calculated as data
arrive (error estimated with all measurements used as ground truth).

quality of predictions acutely. Instead, we use the weighted
error of the estimated parameters, defined as

εk = (x̂k − xci)T(Pk)−1(x̂k − xci), (17)

where xci denotes the ground truth for the sine-generated
curves. The similarity between (11) and (17) is worth clari-
fying: the measurement update steps of all three filters can
be regarded as the solution of an optimization problem,
for which the objective function is simply weighted least
squares [12]. The first term in (11) is concerned with the
immediate sensor reading; we discard its contribution and
the second term forms the basis of the state weighted error
metric, as it uses the same matrix, P−1k , for the weights.

Representative results using the three filters on the curves
appear in Fig. 3, which shows mean and variances summariz-
ing 30 independent simulations per filter. The vertical axis
is the logarithm (base 10) of weighted error of estimated
parameters at each state. The horizontal axis shows the
observation data set for each curve, for twice the spatial
period of each curve, with measurements with an inter-
sample distance of 5 m. The convergence of CIUKF’s stands
in clear contrast to the degradation of the estimates of both
the EKF and UKF.

B. Evaluation on map-based data

The verisimilitude of the sine-generated model will always
be imperfect for real rivers. In a sense, the preceding eval-
uation gives best possible conditions for an estimator and,
thus, gives ample justification to dispense with the EKF and
UKF further.

Fig. 8. Plots analogous to those in Figs. 4 & 6 for data collected from
GPS in a boat on the Colorado River. In the main image the samples are
drawn after 5020m, for the lower-left after 9651m, and for the lower-right
after 12 030m.

In order to provide realistic river data as input to the
CIUKF, we manually labeled rivers on maps within Google
Earth. Longitudes and latitudes of points on two centerlines
of the Brazos River near Lake Whitney, Texas (USA) and
the L’Anguille River near Caldwell, Arkansas (USA) were
collected and processed to provide measurements for the
filter. Satellite photographs of these two meanders are shown
in lower-center insets in Fig. 4 and Fig. 6.

As before, we purposefully used input data at different
scales. The total distances traversed in the datasets for the
rivers are 15 929 m and 1849 m, respectively. There are
225 labeled points with average sampling distance of 70 m
for the meander centerline of the Brazos River, and 159
labeled points with average sampling distance of 11 m for
the meander centerline of the L’Anguille River. Fig. 5(a)
and Fig. 7(a) show the measured and the CIUKF estimated
directional angles of both meanders, where the angles are
computed using (2) and red line is plotted using the estimated
parameters after the final measurement. In order to track the
performance of the filter over the distance along the flow,
we have constructed the weighted error at each state, see
Fig. 5(b) and Fig. 7(b), using (17), where here parameters
estimated after all measurements is taken to be the ground
truth in lieu of any alternative.

A more direct and perhaps a more meaningful visual-
ization of the estimate is to produce sine-generated curves
using sampled parameters from the estimator, and convert
those into Universal Transverse Mercator (UTM) coordi-
nates. Fig. 4 and Fig. 6 show predictions of the river forward
of where the robot has traveled. Fig. 4 shows the visualization
of estimates at 3975 m (lower-left inset), 8995 m (main
figure) and 12 957 m (lower-right inset). Fig. 6 shows the
visualization of estimates at 369 m (lower-left inset), 647 m
(main figure) and 991 m (lower-right inset). The transparency
of predicted meanders indicates the normalized probability
densities of the samples.

C. Evaluation using data collected on a boat

To further get a sense of how capable the estimator would
be for use on a robot, we used data collected in situ from
a boat navigating an extended stretch of river. We hired a
ski-boat (along with an experienced pilot) and collected GPS
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Fig. 9. Plots analogous to those in Figs. 5 & 7 for GPS data from the
boat on the Colorado River. Left: (a) Blue dots are data points and the
solid orange line shows the estimator’s fit after 1370 measurements. Right:
(b) State weighted error calculated as data arrive (error estimated with all
measurements used as ground truth).

Fig. 10. The trajectory the boat travelled on the Colorado River, TX (USA).

positions of the boat trajectory on the Colorado River starting
from noon, 4th Sept. 2016. To get an overall sense of the
entire dataset, Fig. 10 shows the trajectory tracked on our
homeward leg, returning from the furthest point reached back
to the dock, with a distance of 40 593 m. The entire trip
was twice this one-way length, for which we made 8366
measurements with an average sampling distance of 10 m.
The measurement frequency for the GPS sensor was 10 Hz.
The average speed for the boat was 10 m/s, though the boat
is capable of a maximum speed roughly double that.

Turning first to data collected on the outward journey,
we applied CIUKF using parameters identical to before on
the first stretch of 14 900 m for which there are 1370 mea-
surements with average sampling distance of 10 m. Fig. 8
provides a visualization of estimates at 5020 m (lower-left
inset), 9651 m (main figure) and 12 030 m (lower-right inset)
on the outward journey. The filter fits a sinusoidal curve to
the measurements in a manner comparable to previous data.
Fig. 8 shows additional detail on convergence for this part
of the journey. However, in the next the section, we apply
the filter over a longer stretch of the Colorado River, with a
far less satisfactory outcome.

We are also interested in situations where the boat does
not to follow the centerline exactly owing to uncertainty. To
simulate this situation we corrupted the GPS positions with
noise through the addition of random displacements. Vectors
vd, in polar coordinates (rvd , θvd), are randomly drawn from
distributions rvd ∼ N (20, 25) and θvd ∼ U(0, 2π). The
mean value of the displacement magnitude, 20 m, is inap-
preciable compared to the length and width of the meander.
Nevertheless, Fig. 11 (a) shows that the added displacement
vectors introduce non-negligible errors into the estimate of
direction. As shown in Fig. 11 (b), it also takes more steps
for the CIUKF to converge. In our experiments, the boat’s
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Fig. 11. Plots analogous to those in Figs. 5, 7 & 9 for GPS data from the
boat on the Colorado River, but with noise added. Left: (a) Blue dots are
data points and the solid orange line shows the estimator’s fit after 1370
measurements. Right: (b) State weighted error calculated as data arrive (error
estimated with all measurements used as ground truth).

skipper may have deviated from the true river centerline, but
one would expect that the error introduced by an experienced
pilot would be less than the noise introduced synthetically
in the preceding evaluation.

V. FURTHER ANALYSIS & OUTLOOK

A. Assessing sensitivity to initial conditions

We examined the sensitivity of the estimates to the choice
of initial covariance matrices (i.e., in (15)). Details are in [2],
but to summarize: neither the predictions made by the EKF,
nor the CIUKF, show sensitivity to the initial conditions.

B. Quantifying confidence in the predictions

The curves in Figs. 4, 6, and 8 show that predictions
generally improve with additional measurements, but also
that there are parts of river bends that deviate from the sine-
generated curve model. In judging curves by sight alone
one can easily be mislead. What is desired is a measure
of precision with an obvious interpretation: we wish to have
a general sense of how useful the resulting predictions will
be for subsequent planning. If the estimator’s output is to be
used by a robot to select its actions, for example, in bounding
throttling speeds as the boat rounds a bend, a metric that
relates to some notion of risk as a function of distance ahead
of the boat seems prudent.

We introduce a measure, that we call the prediction confi-
dence, which serves to quantify that proportion of predictions
(weighted by the probability) falls inside the river. The idea
is that one can tolerate some imprecision, but misclassifying
riverbank for water is crucial mistake. This confidence is
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Fig. 12. Prediction confidence vs. look-ahead distance for the (top) Brazos,
(center) L’Anguille, and (bottom) Colorado Rivers. The 1st, 2nd, and 3rd refer
to the three positions on meanders shown in Figs. 4, 6 and 8, respectively.
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Fig. 13. The estimator clearly fails to converge on this long stretch of data,
in contrast to successes on local portions.After fusing 4183 measurements,
it appears to ignore the ‘high-frequency’ structure in the angular data.

most meaningful when thought of as a curve that falls off a
one looks further up the river. We define Wk, the prediction
confidence at state k, as:

Wk(sahead) =

∫ +∞

−∞
min

(
sin

sahead
, 1

)
Pr (x | x̂k, Pk) dx, (18)

where Pr (x | x̂k, Pk) is the probability density of the normal
distribution with mean x̂k and variance Pk, sahead is the look-
ahead distance and sin is how far the look-ahead distance
remains inside the riverbanks. The value of sin is computed
starting from the Cartesian coordinates of the position at sk.
(Note that, up to this point, the paper has considered only
the centerline of any river; computation of sin also requires
knowledge of the river’s breadth.)

Fig. 12 shows the prediction confidence versus look-ahead
distance for three positions on meanders shown in Figs. 4,
6, and 8. This quantifies the improvement in prediction as
the filter processes more observations (from the first location
to the second, and to the third), indicating how the robot
can have more confidence in its estimation. Analyzing these
curves allows one to understand the horizon over which a
planner might safely and profitably operate.

C. Nonstationarity in the meander model

Following the evaluation reported in Section IV-C, we
attempted to run CIUKF on the full homeward trajectory taken
by the boat, shown in Fig. 10. The measured and the end-
location CIUKF estimated angles are shown in Fig. 13 in a
plot similar figures before. In this case, the failure of CIUKF
to fit a sinusoidal curve to the measured directional angles
is obvious. We posit that this failure is because the overall
trajectory of the river is insufficiently well-characterized with
a sine-generated curve for any choice of parameters.

One might have better success on this full trajectory by
regarding it as a piecewise concatenation of multiple sine
generated curves, each with local sine-generated curves. One
may be able to reset the filter once a series of measurements
indicate poor fit and converge (from the prior) to a good
local characterization. (This is not an entirely speculation,
as the data in Fig. 9 are very similar to a window in Fig. 13,
one being part of the outward journey, the other being the
full return.) Alternatively, with a better understanding of how
non-stationarity is manifest in meanders, one may be able to
capture this in (8). These are directions for future work.

VI. CONCLUSION

In this paper, we have shown how to use a simple but
classical geological model of watercourses to parameterize

estimators. The periodic and non-linear form of the model,
while quite natural seeing as river meanders are themselves
characteristically periodic phenomena, poses challenges for
straightforward Kalman-based filters. Our results provide
convincing evidence that imposing state space constraints to
ensure unimodality improves the quality of prediction esti-
mates, helping achieve convergence. The model of meanders
has been shown to be applicable across an impressive range
of scales, from small streams to cross-continental rivers. In
our evaluation too, we examine diverse scales of river. When
the observations are from a part of the river that is well-
described by the meander model, no matter the particular
scale of the river, the estimates are sufficient to aid a planner.

More broadly, the regularity induced by a flowing stream
of water represents an important opportunity for the roboti-
cist. Relatively little research has incorporated such structure,
but the present paper provides only one example of a rich
lode ready for exploitation.
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