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1 Introduction and Problem Statement

Recently there has been surge of research in motion

planning for tethered robots, e.g., Igarashi and Stilman

(2011). When a mobile robot is tethered, the base point

to which it is tethered is most often itself mobile, even

if only at substantially greater cost. As illustrated in

Figure 1, connecting a pair of agents together can ben-

efit both. Indeed, Kim et al (2013) explored how a ca-

ble connecting robots can be used to manipulate ob-

jects. Thus, we are interested in developing a method

for planning motions of two robots, r+ and r−, that

are connected to each other via a cable. We believe this

problem can be addressed by extending the methods

developed in our prior work (Teshnizi and Shell, 2014;

Teshnizi, 2015) for planning motions of a single tethered

robot.

We refer to this problem as the two tethered robot

motion planning (2trmp). In order to develop the foun-

dation of a method, we assume the obstacles and robots

are points in R2 for simplicity. We also assume, similar

to our preliminary work, that the tethering cable is of

the retracting type (i.e., it can be assumed to be always

taut). Thus, we are permitted to model its configura-

tion with a set of straight line segments. We assume

we are given: (i) a pair of points (P s
r+ , P

s
r−) describing

the (non-oriented) robots’ initial locations; (ii) a pair of

points (P d
r+ , P

d
r−) describing the target locations; (iii) a

set of obstacles; (iv) a path describing the tether’s cur-

rent configuration and its maximal length L. A solution

to the 2trmp is a pair of paths which, when executed si-

multaneously by the pair of robots brings them to their

target locations and that the length constraint of the

cable is never violated en route. (In general the execu-

tion phase of the robots may involve one robot waiting

for the other if the cable is taut, but the robots can

compute when to wait locally). Otherwise, if no such

pair of paths exists, solving the 2trmp requires an in-

dication of this fact. The optimality of the solution is
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Fig. 1: Climbers moving in a rope team illustrates

how connections between agents helps provide balance

between freedom and security. Image source: http:

//mtbakerguides.com/

dependent on some specific cost function; we consider

sum of robot traversal distances.

2 Progress to date

We begin by partitioning the obstacle points into three

sets. The first set are obstacles around which the tether,

in its initial pose, is currently contacting. The second

set are those within the ellipse whose foci are P d
r+ and

P d
r+ with semimajor axis L

2 . The remaining points form

the third set. Figure 2 gives an example of this process.

If, during the execution of a given solution, the cable

contacts one (or possibly more) of the green obstacles,

the robots are still able to reach their destinations. Af-

ter execution of any feasible solution the final config-

uration of the cable never has a contact with any red

obstacle.

We consider the problem as belonging to one of

two classes: a (c) Category 1 Solution to the 2TRMP

problem keeps at least one black obstacle in contact

with the cable after its execution. Otherwise, if not a

Fig. 2: A simple 2trmp instance showing the ten ob-

stacles that have been partitioned into the three sets

we describe, shown by color (black, green, red, respec-

tively).

http://mtbakerguides.com/
http://mtbakerguides.com/
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c solution, we it is a (c) Category 2 Solution. This

provides some structure to the solution:

• Proposition 1: An optimal solution always starts

with detaching the cable from zero or more obstacles

and continues with attaching the cable to zero or more

obstacles.

• Proposition 2: The shortest c solution is always

shorter than all the c solutions.

The above propositions are a starting point for a

method. We will begin our search by looking for c so-

lutions. If no c solutions are found, we will look into c

solutions and pick the optimal, if such a solution exists.

Due to the combinatorial nature of c solutions, the

process of finding the optimal c solution is much more

computationally expensive than finding a c solution.

As of now, we are able to make use of our prior

work to find c solutions efficiently. We are aware of

some heuristics to simplify search for c solutions but

these are ad hoc and, consequently, are not discussed

further.

Finding c Solutions

A c solution requires the cable connecting the two

robots to touch at least one point obstacle in the envi-

ronment. In our prior work (Teshnizi and Shell, 2014),

we describe a decomposition of the c-space based on

visibility cells. In the initial condition for a c solution,

the two robots reside in two different visibility cells. The

key to finding a solution is that the two robots share a

fixed amount of cable, so that L is the most they can

possibly consume individually for reaching their respec-

tive destinations.

We give only a sketch of the algorithm and show its

operation. Basically, we employ a Dynamic Program-

ming approach. We consider all the solutions that fit

into the definition of a c solution, but reusing par-

tial solutions to save work. To find the optimal solution

to the problem we construct multiple n-element arrays.

The first array, dr+ , in which the ith element holds the

shortest path for r+ from P s
r+ to P d

r+ such that after

the execution of the motion, the cable is still contact-

ing obstacle i. A similar array, dr− , is constructed for

r. We also store the consumed cable associated to the

paths in dr+ and dr− in two n-element arrays, cr+ and

cr− . The ith element in cr+ holds the length of the ca-

ble consumed from obstacle i to the destination. Once

the values for dr+ , dr− , cr+ and cr− have been deter-

mined, finding the optimal solution is straightforward.

It is worth noting that this procedure does not rely on

our specific planner.

The table in Figure 4 shows the values stored in the

respective arrays for the example shown opposite.
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(a) The problem input.
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(b) Robot r+ goes directly from P s
r+

to P d
r+

. The green
circle sector shows the radius that is reachable to r with
the remaining cable length.
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(c) The shortest path for r+ that untangles obstacle 1
while going from P s

r+
to P d

r+
. This frees more cable for

r to use.
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(d) Here r+ untangles obstacles 1 and 2 while going
from P s

r+
to P d

r+
.
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(e) Obstacles 1, 2, and 3 are untangled en route.

Fig. 3: A simple example.

No. by r+ r+’s r+ r−

P s
r+ ,P d

r+ 28.3 P d
r+ ,1,2,3,4,P s

r− 75.9 24.1
P s

r+ ,1,P d
r+ 31.9 P d

r+ ,2,3,4,P s
r− 55.4 44.6

P s
r+ ,1,2,P d

r+ 46.1 P d
r+ ,3,4,P s

r− 45.3 54.7
P s

r+ ,1,2,3,P d
r+ 67.8 P d

r+ ,4,P s
r− 43.6 56.4

Motion Steps Travelled
Distance

Figure Cable Config.
after Motion

Cbl. Consumed
by for

Cbl. Left

3(b)
3(c)
3(d)
3(e)

Fig. 4: A table showing the dynamic programming form

of the solution for the problem in Figure 3.
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