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Abstract— We address the problem of deciding what informa-
tion a robot should transmit to the outside world, by exploring
a setting where some information (e.g., current status of the
task) must be shared in order for the robot to be useful, but
where, simultaneously, we wish to impose limits which ensure
certain information is never divulged. These sorts of conditions
arise in several circumstances of increasing relevance: robots
that can provide some guarantee of privacy to their users,
controllers which safely use untrusted “cloud” services or
smart-space infrastructure, or robots that act as inspection
devices in information-sensitive contexts (e.g., factories, nuclear
plants, etc.) We introduce an algorithm which takes as input an
arbitrary combinatorial filter, expressed as a transition graph,
and a set of constraints, constituting both upper and lower
bounds, that specify the desired informational properties. The
algorithm produces a coarser version of the input filter which
possesses the desired informational properties, if and only if
such a filter exists. We show that determining whether it is
possible to satisfy both the distinguishablity and indistinguish-
ablity constraints is NP-hard. The hardness result helps justify
the worst-case running time of the algorithm. We describe an
implementation of the algorithm along with empirical results
showing that, beyond some minimum problem complexity, the
algorithm is faster than näıve filter enumeration, albeit with
greater memory requirements.

I. I NTRODUCTION

Every robot designer faces the problem of deciding how
the information from sensors should be processed and stored
by their robot. Any robot that responds to its environmental
conditions inevitably discloses some information about its in-
ternal state or its estimates of the world’s state; indeed, doing
so often comprises a large part of the robot’s purpose. As
information is accumulated and integrated, this information is
communicated via its choice of actions, status displays (e.g.,
lights blinking, or interfaces with visualizations of internal
variables), or data logs that are written. But disclosure of
such information has the potential to be detrimental. It may,
for example, violate the privacy of individuals who have been
interacting with the robot. In fact, guaranteeing that certain
information will not be divulged may be a vital requirement
for the robot. A nuclear inspection robot may be barred from
entry to site by authorities if it leaks sensitive or proprietary
information deemed to be unrelated to its arms control duties.
This paper is concerned with rigorously treating questions
regarding the sharing of information available to the robot.

To illustrate the general class of problems we address,
Figure 1 depicts a somewhat whimsical scenario where a
robot has constraints on what information it can divulge.
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Fig. 1: [Top] A mobility impaired user is assisted by a robot escort. We wish
to ensure that the robot never divulges information that could distinguish
activities conducted in the master bedroom and guest bedrooms, respectively.
However, the robot should make information available about the status of the
rose garden.[Bottom left] If the information disclosure criteria are satisfied
by some controller, then there exists an associated coloringof the robot’s
filter graph. The coloring shown above indicates that certain states (and
possibly belief states) can be disambiguated without leaking unwelcome
information. [Bottom right] If the northern patio door is locked and the
east patio door unlocked, the coloring no longer serves its purpose. In fact,
no controller satisfies the information criteria under thosecircumstances
because transitions outside not via the front yard indicatethat the user could
only have been in the master bedroom.

In the example, a helpful robot escort assists its mobility
impaired user, horticultural enthusiast seedy John, around
the home and garden. To be useful the robot localizes itself
and keeps track of the room it occupies at all times. John
waters his roses whenever he has opportunity to pass by
them so, in order to avoid grievous over-watering, the robot
notifies his (intermittent) garden service of the fact that
the rosebushes have already been watered that day. It does
this by publishing information about John’s movement in
the front yard. However, care must be taken to ensure that
the robot does not divulge information that violates the
privacy of the user when communicating with other entities
(e.g., caretakers, remote technical support). To protect John’s
propriety, we guarantee that his nocturnal habits remain
confidential by requiring that time spent in one bedroom be
indistinguishable from time spent in the other. This miniature
example, although twee, captures the essence of information
sharing constraints and one may readily scale the description
up to larger and more realistic problems.



The lower-left graph in Figure 1 shows the information
maintained by the robot (a topological representation where
transitions occur as the robot crosses a door/gate threshold).
The information constraints in this problem are satisfied —
perhaps rather obviously— by divulging only the colors
associated with the graph vertices. However, the existenceof
a suitable filter is not always so straightforward to determine.
Constraints that dictate certain information should not be
divulged do not merely imply that those states must have
the same color; an astute adversary may disambiguate states
in the original filter by examining sequences of colors.
Moreover, seemingly minor modifications to the situation
can have important consequences. Suppose, in the example,
that the East patio door is unlocked (shown with purple the
padlock), and the North patio door is sealed (shown with the
blue padlock, see also the lower-right graph). Under these
apparently innocuous changes, no suitable coloring exists.

We present an algorithm that accepts an inputcombinato-
rial filter (a discrete structure that encodes the information
available to a robot) and a constraint graph specifying
states within that filter which should be distinguishable and
indistinguishable from one another. The algorithm outputs
a coarser version of the original filter which satisfies the
constraints, if only if such a filter exists. The approach works
by constructing a graph representing what an adversary could
soundly infer on the basis of observations of the filter’s
outputs. Then this observer graph is pruned to ensure the
information constraints are met. Next, a coloring of the
original filter is found by constructing a Boolean formula
that must be satisfiable precisely when such a coloring exists.
Any information transmitted —or actions selected— solely
on information in the coloring will not expose knowledge
that violates the given constraints. We also show that the
problem this algorithm solves is NP-hard, somewhat excus-
ing its inefficiency and, thereby, making use of a Boolean
SAT solver defensible.

After reviewing related work in Section II, this paper first
defines the constrained filtering problem in Section III in
a general way. Then Section IV examines how an eaves-
dropping adversary can infer information and makes this
notion precise. Sections V and VI prove the hardness result
and detail the proposed algorithm, representing the main
contributions of the paper, respectively. Section VII describes
quantitative experiments that measure the performance of our
algorithm, and the final section of the paper concludes by
outlining some directions for future work.

II. RELATED WORK

The objects of study in this paper are combinatorial filters
and information-state graphs that are used for representing
uncertainty and its evolution under a sequence of observa-
tions and actions. These representations go back a long way
in robotics, at least to Erdmann and Mason [2], and Gold-
berg [3] who consider them for manipulation tasks. These
filters were formalized in a general way by LaValle [8], [9].
Recent works that use combinatorial filters consider a wide

a range of tasks, including target tracking [18], mobile robot
navigation [10], [16], and manipulation [7].

Prior work by the authors has begun to explore algorithmic
questions where combinatorial filters are treated as first-
class entities. We tackle a related problem offilter reduction
in [14] where, given an arbitrary filter, we seek an equivalent
filter which uses the fewest information states to complete
the same filtering task. In [15] we examine the active variant
of the problem, proceeding along similar lines, in seeking
the most compact plan able to perform a task. Unfortunately,
merely minimizing the size of filter (or plan) does not result
in one which preserves privacy. Exploring the outputs of
these algorithms suggests that, rather than obfuscating state
information, usually the algorithms help clarify underlying
structure.

This work falls within the broader class of correct-by-
design approaches wherein a formal specification of the
controller requirements are provided beforehand and syn-
thesis techniques, or verification techniques, or both are
employed to guarantee the specifications are met (cf. e.g.,
[5], [6]). Researchers in discrete-event systems have explored
a related notion calledopacity where secret behavior may
be obscured via constructing obfuscating outputs [17]. The
model in this paper is slightly stronger: a robot equipped
with a filter satisfy the constraints has no interesting secrets
by construction.

Finally, earlier work by one of the authors [13] examines
a related case where, in a specific geometric context, a
robot may choose actions to increase its ignorance because
everything the robot is aware of can potentially be divulged.
In a sense, that work has every state colored uniquely, but
the robot chooses its actions to maintain some property (of
ambiguity) on those states. This paper considers only the
passive case, but there is space to explore the combination
of these ideas in future work by having some coloring of the
filter that satisfies the distinguishablity constraints andalmost
satisfies the indistinguishablity constraints, and then having
the robot choose actions to maximize indistinguishablity.

III. PROBLEM STATEMENT

This section formalizes our information disclosure con-
strained filter coloring problem.

A. I-state graphs and filters

We consider systems in which a robot interacts in discrete
time with its environment by executing actions and receiving
observations from its sensors. We assume that the robot uses
the history of these actions and observations to form some
representation of its knowledge about its current state and
use the termlocal information state (local I-state)to denote
that representation.1

In this paper, we are concerned only withchangesto the
local I-state. Notice that both actions that the robot takesand
observations that it collects have the same impact, namely

1The term “I-state,” used in this very general sense, was introduced by
LaValle [8]. We use the modifier “local” to distinguish these from the
observer I-states introduced below.



to induce a transition from one local I-state to another.
Therefore, we adopt the generic termeventto denote either
an action or an observation. Each event corresponds to a
discrete unit of information that becomes available to the
robot during its execution. The robot experiences a sequence
of events in discrete time, all drawn from anevent spaceY
of finite size. Formally, we can model such a system as a
directed graph [14].

Definition 1: An I-state graphG is a edge-labelled di-
rected graph supplemented with a starting vertex,i.e., G ,

(V ,E , l : E → Y , v0), in which
1) the finite setV contains vertices which we call “I-

states”,
2) the setE consists of ordered pairs of vertices termed

directed edges,
3) each edge is labelled with an event via the functionl ,

and
4) the starting I-state is identified asv0 ∈ V .

In addition, no two edges originating from the same vertex
may have the same label.

Under this kind of model, the set of edges outgoing from
each local I-state corresponds to the set of events that can
plausibly occur when the robot is in that I-state. Depending
on the structure of the underlying problem, some events may
never occur from some I-states. As a result, the vertices of
an I-state graph may have out-degree less than|Y |.

Definition 2: An event sequencey0, . . . , yn is plausible in
an I-state graphG if there exists a path ofn edges through
G, starting fromv0 and crossing edges labelled with those
events in order.

We assume that, at each time step, the robot divulges a
single symbol, chosen without loss of generality from the
setN+ of natural numbers and uniquely determined by the
current local I-state. Following the tradition of graph theory,
we informally refer to these symbols ascolors.

Definition 3: A filter F is an I-state graph supplemented
with an assignment of colors to its vertices. That is,F ,

(G, c : V → N
+), in whichG is an I-state graph and the

functionc assigns a natural number to each I-state.

We refer to the color assigned the current I-state as the
outputof the filter. At each time step, the robot divulges this
output using an untrusted channel, visible to both trusted and
untrusted agents alike.

B. Constraints positive and negative

The definition of a filter does not provide any guidance on
how the coloring should be selected. Informally, the robot
should choose a coloring that simultaneously ensures that
its friends receive the information they need to coordinate
appropriately, without divulging sensitive information to ad-
versaries that may be observing that same channel. The next
definitions formalize this requirement.

Definition 4: A constraint on an I-state graphG =
(V ,E , l : E → Y , v0) is an unordered pair of distinct
vertices{v, w} ⊂ V .

Definition 5: A coloring c of G satisfies a constraint
positively if, for every plausible event sequencey0, . . . , yn
leading tov, there does not exist any other plausible event
sequencey′0, . . . , y

′
n that leads tow, and has the same colors

at each step. That is, there exists noy′ sequence leading to
w such thatc(yi) = c(y′i) for all i ≤ n.

The intuition is that a positive constraint(v, w) requires
that an observer who sees the sequence of colors output by
the filter should never be confused about whether the robot’s
local I-state isv or w. Informally, a positive constraint can
be viewed as alower boundon the informative value of the
filter’s output.

Conversely, we can describe upper bounds on the infor-
mation that can be inferred from the filter’s output using
negative constraints.

Definition 6: A coloring c of G satisfies a constraint
negativelyif, for every plausible event sequencey0, . . . , yn
leading tov, there exists another plausible event sequence
y′0, . . . , y

′
n that leads tow, and has the same colors at each

step. That is, there exists ay′ sequence leading tow such
that c(yi) = c(y′i) for all i ≤ n.

A negative constraint requires a coloring that causes an
observer never to be sure that the state isv but not w
or vice versa. Put another way, every sequence of filter
outputs that indicates that the robot may be at local I-state
v also indicates that the robot may be at local I-statew.
Informally, a negative constraint is aupper boundon the
information communicated by the filter; it is a requirement
that the resulting filter remain discreet about certain pieces
of information.

C. A Basic Example

Next, we give a minimal example as a concrete illustration
of the definitions. Suppose that we have a robot that inhabits
a 2×2 grid world, capable of moving “Up”, “Down,” “Left,”
and “Right” and always fully aware of which grid cell it
occupies. The I-state graph which describes the robot’s state
information is shown in the left subfigure of Figure 2. The
start states models an initial condition in which any of the
four grid cells might be the robot’s true start state. Assume
that the robot wishes to communicate the column that it
currently occupies but never to disclose information which
can distinguish the correct row. This can be captured with
constraints like the positive constraint{01, 10} indicating
that 01 is never to be mistaken with10. Six constraints
are needed in all and they are shown in graphical form on
the right subfigure of Figure 2 where we denote a positive
constraint with a solid edge between the two states involved.
Similarly, a negative constraint is represented with a broken
edge connecting both states.

This particular problem has a coloring with two colors that
is a solution: both00 and01 are colored one color;10 and
11 are colored the other; ands is colored arbitrarily.

D. Goals

With these definitions in place, we can finally state the
problem that we address in the balance of the paper.
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Fig. 2: A minimal example of robot living in a tiny grid world.[Left] An
I-State graph describing the robot’s position, the initialstate “S” encodes
uncertainty about its pose initially.[Right] A specification of information
constraints on the robot’s communication is neatly summarized via a
constraint graph.

Problem: Constrained Filter Coloring ( CFC)
Input: An I-state graph G, a set of positive

constraints C+ = {(v+1 , w
+
1 ), . . . , (v

+
n+ , w

+
n+)}

and a set of negative constraints
C− = {(v−1 , w

−
1 ), . . . , (v

−
n−

, w−
n−

)}.
Output: A coloring of vertices ofG that satisfies those

constraints, or a statement that no such coloring
exists.

IV. OBSERVERI-STATE GRAPHS

Definitions 5 and 6 directly describe the properties of
the filters in which we are interested. However, because
those definitions depend on the infinite set of all possible
event sequences, it is not immediately clear how to design
algorithms forCFC that satisfy those kinds of constraints. In
this section, we describe an I-state graph called theobserver
I-state graphof a given filter, and provide alternatives to
Definitions 5 and 6 that can be directly and efficiently
verified in the observer I-state graph.

Definition 7: For a filterF = (G, c), theobserver I-state
graphI is defined as follows.

1) The vertex set isVI = 2V − {∅}. Each element of
this set, called anobserver I-state, corresponds to a
non-empty set of local I-states.

2) For each observer I-stateη1 ∈ VI and each colork
in the range ofc, the observer I-state graph contains
an edgeη1

k
−→ η2, in whichη2 is the observer I-state

corresponding to the set
⋃

v∈η1

{w | F has an edgev −→ w andc(w) = k},

if that set is not empty. If that set is empty, thenη1 has
no out-edge with labelk.

3) The initial observer I-state is the vertex corresponding
to the singleton set{v0}.

The intuition is that observers who see the output ofF can
treat those outputs as the events in an I-state graph of their
own. For a given sequence of outputs fromF, the resulting
observer I-state inI corresponds to theset of possible local I-
statesthat are consistent with that output sequence. This form
of worst-case reasoning about possible states is describedin
more detail in Chapter 11 of LaValle’s book [8].

{ s }

{ 1 0 , 1 1 }
2

{ 0 0 , 0 1 }
1

2

1

2

1

Fig. 3: The observer I-state graph for the example in Figure 2,under a
coloring for whichc(00) = c(01) = 1 andc(10) = c(11) = c(s) = 2.

Notice that every event sequencey0, . . . , yn in F leading
to some local I-statev corresponds, by construction ofI, to
a path inI crossing edges labeledc(y0), . . . , c(yn) that leads
to an observer I-state containingv. Likewise, every plausible
color sequence inI corresponds to one or more paths inF
whose output matches those colors. Informally, this means
that the observer I-state graph accurately tracks the sets of
possible local I-states that match the observed outputs ofF.
More directly, we can say that the observer I-state graph
shows the sound inferences about the local I-state that can
be made by observing the outputs of the filter.

These observations lead directly to the following connec-
tion between the observer I-state graph and positive and
negative constraints inCFC problems.

Lemma 1: For an I-state graphG and coloringc of G:

1) Any positive constraint{v, w} is satisfied if and only
if no reachable observer I-state contains bothv and
w.

2) Any negative constraint{v, w} is satisfied if and only
if every reachable observer I-state contains neitherv

nor w, or both v andw.
Both the hardness proof in the next section and the algorithm
in Section VI rely heavily on this alternative view of the
constraints.

Figure 3 shows an example observer I-state graph for the
grid example described in Section III-C, under the constraint-
satisfying 2-coloring described there.

V. CONSTRAINED FILTER COLORING IS NP-HARD

In this section, we show that theCFC problem introduced
in Section III-D is NP-hard. We proceed using the common
approach of reduction from a known NP-complete problem,
in this case a standard graph coloring problem:

Decision Problem: Graph 3-Coloring (GRAPH-3C)
Input: An undirected graphG.

Output: True if there exists coloring ofG using exactly
3 colors, such that no pair of adjacent vertices
shares the same color;Falseotherwise.

This problem is known to be NP-complete [1]. Therefore,
it suffices to show a polynomial time reduction fromGRAPH-
3C to CFC.

Given an undirected graphG1 , (V1 ,E1 ) as an instance
of GRAPH-3C, we construct an instance ofCFC with I-state
graphG2 , (V2 ,E2 , l , s) and constraint setsC+ andC−}
as follows:

1) Create a start vertex inV2 calleds.
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Fig. 4: [Top] An illustrative 4 vertex example instance ofGRAPH-3C.
[Bottom left] The CFC input graph for the corresponding problem instance.
[Bottom right] The constraints for the corresponding instance ofCFC form
three separate graphs.

2) Add additional verticesx andy to V2 .
3) For each vertex inV1 , create a corresponding vertex

in V2 . For each such vertexv, add edgess −→ v and
v −→ x to E2 .

4) Create additional vertices inV2 called{R,G,B}. For
eachv ∈ {R,G,B}, add edgess −→ v and v −→ y

to E2 .
5) Arbitrarily assign a unique labell(e) to eache ∈ E2 .
6) Define C+ = {(R,G), (G,B), (B,R)} ∪ E1 for the

positive constraints andC− = {(x, y)} for the neg-
ative ones.

An example of this construction is shown in Figure 4.
The intuition is to use the information constraints to induce
an observer I-state graph of special form, shown in Figure 5.
The resulting graph has initial vertex{s}, followed by a fan-
out to an intermediate (or “middle”) set of vertices, which
then fan back in to a single vertex{x, y}. The intermediate
vertices encode the original coloring problem with positive
constraints as follows. The{R,G,B} vertices represent
colors (intended as “red,” “green,” and “blue,” respectively)
associated with the graphG1; positive constraints ensure
thatR, G, andB are always kept separate from one another
in the observer I-state graph. The vertices inG1 fall within
this intermediate region, and are forced apart in the observer
I-state graph by positive constraints that are added for each
of edge in the original graph. The negative constraint ensures
that each vertex of the middle layer of the observer I-state
graph contains at least one vertex ofG1 and at least one
of the {R,G,B} vertices. Taken together, these constraints
ensure that any constraint-satisfying coloring induces an
observer I-state graph with exactly three vertices reachable
in one step from the start.

We now formalize this idea, showing that the construction
correctly produces an instance ofCFC that is equivalent to

{ s }
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{ c, B }

{ x, y }

1

2

3

1

1

1

Fig. 5: The observer I-state graph for the problem in Figure 4.

the originalGRAPH-3C instance.
Lemma 2: For any instanceG1 , (V1 ,E1 ) of GRAPH-

3C for which the correct output is “True,” the correct output
for the CFC instance as described above is a coloring of the
vertices ofG2 satisfyingC+ andC−.

Proof: Suppose to the contrary thatG1 is 3-
colorable with coloring c1 : V1 → {0, 1, 2},
but that CFC of G2 determines that no coloring ex-
ists. Then consider the following coloring ofV2 :
Let c2 : v 7→ 0 for v ∈ {s, x, y}, c2 : R 7→ 0, c2 : G 7→ 1,
c2 : B 7→ 2, andc2 : v 7→ c(v), ∀v ∈ V1. Now examine the
observer I-state graphI2 constructed from(G2, c2 ). The
initial state ofI2 is {s}, with edges labeled{0, 1, 2} lead-
ing to three vertices labelled{R} ∪ {v ∈ V1 | c(v) = 0},
{G} ∪ {v ∈ V1 | c(v) = 1}, and{B} ∪ {v ∈ V1 | c(v) = 2}
respectively. Those “middle” three vertices each have an
outgoing edge labelled0 which connects to a vertex{x, y}.

Lemma 1 permits examination of the vertices ofI2 to
verify that the constraints hold forc2 . The constraints in
C+ involve only vertices in the “middle” ofI2 and each is
satisfied either by construction for{R,G,B} or becausec2
collected vertices not connected by edges inE1 by inheriting
the coloring ofc1 . The constraint inC− is satisfied because
x and y only appear together in{x, y}. This leads to a
contradiction, completing the proof.

Lemma 3: For any instanceG1 , (V1 ,E1 ) of GRAPH-
3C for which the correct output is “False,” the correct output
for the CFC instance as described above is that no satisfying
coloring exists.

Proof: Again suppose the contrary, thatG1 is not 3-
colorable but that a satisfying coloring forG2 is provided,
say c2 : V2 → Y ⊂ N

+. Examining the observer I-
state graphI2 constructed from(G2, c2 ), we observe that
it must be of the following form: the initial state ofI2
is {s}, connecting via edges labelled withz ∈ Y to “middle”
verticesv ∈ (2{R,G,B}∪V1 − {∅}). These vertices all have an
edge to a vertex{x, y}. The construction ofI2 and Lemma 1
require thatx andy appear together ifC− is to be satisfied.

The constraints on{R,G,B} in C+ (and Lemma 1) imply
that there must exist at least three distinct “middle” vertices,
one for each ofR, G, andB. In fact, there must be exactly
three “middle” vertices because if there is some other vertex
it must be of the formv′ ∈ (2V1 − {∅}). Then a sequence
of observationsy0, y1, y2 with y1 = c2 (w) for somew ∈ v′

will distinguishx from y, hence violatingC−. Now construct
coloring c1 of G1 as follows:



c1 : v 7→ 0 for v ∈ {u ∈ V | c2 (u) = c2 (R)}
c1 : v 7→ 1 for v ∈ {u ∈ V | c2 (u) = c2 (G)}
c1 : v 7→ 2 for v ∈ {u ∈ V | c2 (u) = c2 (B)}

Sincec2 satisfiesC+, no two u, v ∈ V1 with (u, v) ∈ E1

havec1 (u) = c1 (v). Thus,G1 is 3-colored byc1 , yielding
the contradiction.

Finally, we must show that the reduction is time-efficient.
Lemma 4: The reduction fromGRAPH-3C to CFC de-

scribed about takes time polynomial in the size ofG1.
Proof: The size ofG2 is linear in the size ofG1, and

each element ofG2 can trivially be constructed in constant
time. Likewise, the size ofC+ is linear in the number of
edges ofG1, and each constraint is trivial to construct.
Finally, C− is constant.

Importantly, the construction imposes structure that en-
sures the observer I-state graph is structured as desired, but
the construction never forms the observer I-state graph—
which may have size exponential in the size ofG2—directly.

We now have all of the constituent parts needed to state
our hardness result.

Theorem 1:CFC is NP-hard.
Proof: Combine Lemmas 2, 3, and 4.

Note that, while this result shows thatCFC is NP-
hard, whetherCFC is in NP—and, therefore, NP-complete—
remains unproven. Indeed, it is not immediately clear that,
given an instance ofCFC and a coloring for the I-state graph,
one can verify the correctness of that coloring in polynomial
time, since the most direct way of performing that verifica-
tion requires construction of the potentially exponential-size
observer I-state graph.

VI. A LGORITHM DESCRIPTION

This section describes an algorithm forCFC. Although
its worst-case runtime is exponential in the size of the
input graph—as it likely must be, in light of Theorem 1—
the algorithm always produces the correct output, and does
so much faster than direct brute force for many problem
instances.

Two main ideas underlie the algorithm’s operation. First,
we use a “universal” observer I-state graph containingevery
I-state transition that the observer might make, across all
colorings of the input graph. We then view the problem of
satisfying the given constraints as a problem of selecting a
coloring that removes enough edges from this graph to ensure
that no path exists from the start to any observer I-state that
violates any of the constraints. Section VI-A describes this
graph in detail.

Second, to find a coloring of the filter that cuts the
universal observer I-state graph in this way (or to show
that no such coloring exists), our algorithm forms a Boolean
formula that has a satisfying assignment if and only if the
original filter has a coloring that satisfies the constraints.
Moreover, filter coloring can be extracted directly from a
satisfying assignment for this formula. After constructing
this formula, our algorithm uses a highly optimized complete
SAT solver to search for a solution. Details about this process
appear in Section VI-B.

Fig. 6: [Left] The universal observer I-state graph for the I-state graph
in Figure 2. Vertex labels are omitted due to space limitations. The start
vertex is shown as a square (�); all other vertices are shown as circles (©).
[Right] The optimized universal observer I-state graph actually computed
by our algorithm. It omits outgoing edges from observer I-states that violate
the constraints.

A. The universal observer I-state graph

The first step of our algorithm is to construct a graph that
contains all I-state transitions that an observer might make,
across all colorings of the input filter.

Definition 8: For a given I-state graphG = (V,E, l, v0),
the universal observer I-state graphU is an unlabeled
directed graph.

1) Every distinct subset of the vertices ofG corresponds
to a vertexη of U. We writeV (η) for the vertex set
associated withη.

2) An edgeη1 −→ η2 exists if and only if thereexists
some coloring ofG, under which an observer that
knows the robot is in a state inV (η1) could receive
some color as the filter output, and conclude that the
robot might be in some state inV (η2) at the next step.

3) The start vertexη0 of U corresponds to the singleton
set{v0}.

Informally, we can think ofU as a graph that collects all
of the edges from all potential observer I-state graphs. The
left portion of Figure 6 shows the universal observer I-state
graph for the example of Section III-C.

1) Generating edges inU: To find the out-edges of
a given I-stateη—without iterating over the exponentially
many colorings ofG—we first compute thesuccessor setof
η:

S(η) =
⋃

v∈V (η)

{w | F has an edgev −→ w},

We then generate an edge inU from η to the vertex
corresponding to each element in2S(η). This process follows
directly from the definition ofU. Each edgeη1 −→ η2
generated in this way exists precisely when two conditions
are met: (i) all of the vertices inV (η2) share a color; (ii) the
vertices do not share any color with other vertices inS(η1).

2) Separatingη0 from constraint-violating I-states:The
value ofU to our algorithm is that we can view the selection
of a particular coloring ofG as a deletion of the edges of



U that are not consistent with that coloring (and a labeling
of each remaining edge the appropriate color). In addition,
it is easy to identify the vertices that violate the given set
of positive and negative constraints, by applying Lemma 1.
These two facts, taken together, allow us to recast the original
problem in the following way.

Choose a coloring ofG that deletes enough edges
from U to ensure that no path exists inU from its
start vertex to any I-state that violates any positive
or negative constraints.

3) OptimizingU: The universal observer I-state graph
introduced in Definition 8 is sufficient for our algorithm,
but it may contain some elements that are readily identified
as useless to our algorithm. Therefore, the algorithm applies
two simplifications as it constructsU:

1) Since our algorithm is concerned only with paths inU

starting fromη0, we construct only the portion ofU
that is reachable fromη0. That is, we use a forward
search fromη0, instead of enumerating the powerset
of V . This reduces the number of vertices inU.

2) Since our algorithm is concerned only with paths that
reach some observer I-stateη that do not violate the
constraints, we omit out-edges from any such observer
I-state. This reduces that number of edges inU.

The right portion of Figure 6 shows an example of the
simplifiedU resulting from these optimizations.

B. Reduction to SAT

In the previous section, we argued thatCFC can be solved
by selecting a coloring that deletes at least one edge in
U from every path betweenη0 and any constraint-violating
observer I-state. In this section, we show how to construct
a Boolean expressionf that is equivalent to this problem.
Specifically, there exist Boolean values for the variables in
f under whichf evaluates toTrue, if and only if there exists
a coloring ofG that satisfies all of the positive and negative
constraints of the problem instance.

We constructf from two distinct types of variables.

• For each pair(vi, vj) of distinct vertices inG, we
introduce asame-color variablecij . This variable is
intended to have the valueTrue if and only if vi and
vj share the same color in the final filter.

• For each edgeη1 → η2 in U, we introduce anedge-
exists variableeη1η2

. This variable is intended to have
the valueTrue if and only if the coloring defined by
the same-color variables generates an observer I-state
graph in which this edge exists.

Based on these variables, our algorithm constructsf as a
conjunction of three different kinds of subexpressions.

• First, we generate subexpressions that force the same-
color variables to represent a legitimate coloring.
Specifically, they must encode an equivalence relation
onV . To force this relation to be symmetric, we include
subexpressions for each vertex pairvi, vj of this form:

cij = cji

To force the same-color relation to be transitive, we
include subexpressions of this form for every trio of
distinct vertices:

cij and cjk → cik

Finally, an equivalence relation must also be reflexive,
so for each vertexvi of F, we include a subexpression

cii = True

• Next, we generate subexpressions that establish the
connection between the same-color variables and the
edge-exists variables. Recall from Section VI-A.1 that
an edgeη1 −→ η2 exists in the observer I-state graph
when all of the vertices inV (η2) share the same color,
and no other vertices inS(η1) share that same color. We
express that directly as a subexpression inf by choosing
an arbitrary elementvi ∈ V (η2) and comparing its
colors to those of the other vertices inV (η2) andS(η1):

eη1η2
=











cij1 and · · · and cijm
︸ ︷︷ ︸

vj∈V (η2)

and

¬cij1 and · · · and ¬cijm
︸ ︷︷ ︸

vj∈S(η1)−V (η2)











• Finally, we add a collection of subexpressions that
require that least one edge from each pathU between
η0 and a constraint-violating I-state to be removed. We
use a depth-first search onU to enumerate such paths.
For each path

η0 → η1 → · · · → ηm,

we generate a subexpression

¬eη0η1
or · · · or ¬eηm−1ηm

,

which evaluates toTrue if and only if that path loses
at least one if its edges.

After generating all of these subexpressions, our algorithm
combines them into a single Boolean expressionf using
conjunctions, and solves the resulting instance of the Boolean
satisfiability problem.

Given an assignment that satisfiesf , we can extract a
coloring forG in a straightforward way:

1) Select a vertexvI of G for which no color is assigned
yet. Assign the next unused colork to it.

2) Find all other verticesvj for which the variablecij is
True. Assign colork to eachvj .

3) Repeat until every vertex ofG has been colored.
If there is no assignment that satisfiesf , then there is no
coloring ofG that satisfies the constraints.

The decision to convert our problem instance to an in-
stance of SAT may appear, on the surface, rather coun-
terintuitive, since SAT is a well-known (and, indeed, was
the first known) NP-hard problem [1]. However, this also
represents an advantage: There has been extensive research
on fast solvers for the SAT problem, to the extent that many
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Fig. 7: A comparison of the running-times for the proposed SAT-based
algorithm and a näıve enumeration method for a robot moving in grids of
various sizes. Data points with error-bars represent the mean and standard
deviations of 30 measurements, circles were (tedious) instances terminated
after a single measurement. The proposed algorithm is faster beyond some
minimum problem complexity but, nevertheless, computation timeincreases
significantly with problem instance size for both methods. Note that the
ordinate axis has a logarithmic scale.

problems—including, we believe,CFC—can often be solved
more rapidly by state-of-the-art SAT solvers than by domain
specific heuristics directly [4], [12].

VII. C OMPARISON TO BRUTE FORCE ENUMERATION

We implemented the algorithm described in the preceding
section using python, making use of thebool2cnf utility
and zChaff implementation of the Chaff algorithm [11]
for the Boolean satisfiability elements. For purposes of
comparison, we also wrote a naı̈ve method that directly
enumerates all possible colorings of its input filter, generating
the associated observer I-state graph and testing whether
the constraints are satisfied for each. All executions in this
section were performed on a GNU/Linux laptop using a
single core of a 2.53GHz Intel Core 2 Duo processor.

We considered generalizations of the2 × 2 scenario in
Figure 2 to anm × n case, where the constraints are
analogous,viz., positive constraints to divulge columns and
negative constraints to obscure rows. We varied bothm and
n, measuring the run-time for both algorithms. Figure 7
summarizes the findings of the experiments. For all but the
smallest problem instances, the proposed algorithm is faster
than näıve enumeration. It should be said, however, that the
primary limiting resource of the method we propose is its
memory use. This suggests that the practitioner can choose
to trade between time and space resources.

VIII. S UMMARY AND CONCLUSION

We address the question of how one might design a
robot controller subject to discreetness constraints on the
information it provides to the outside world. We introduce
a formulation of the problem based on combinatorial filters,
which are discrete structures for encoding the information
available to a robot. We allow the designer to specify both
the information needed to perform a task (i.e., the robotmust
share information that distinguishes certain circumstances)
and information that may not be divulged (i.e., information
should never allow a nefarious agent to disambiguate two
states). If these requirements conflict, there may be no
suitable controller satisfies all constraints; this fact, however,
is not always immediately apparent.

We have shown that finding a filter which satisfies infor-
mational constraints is not likely to be efficiently solvable,
at least not exactly. The exact method we propose appears
to have a running time which is lower than straightforward
enumeration for all but the tiniest problem instances. Future
work should examine whetherCFC is in NP. We speculate
that it is not. Work could also explore whether there are
meaningful approximations to the problem, ideally ones
which do not sacrifice guarantees on information that is not
to be divulged (i.e., negative constraints). As alluded to in
Section II, one direction is to consider active rather than
passive variants of the problem.
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