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Abstract— Recently researchers have approached the prob-
lem of motion planning with topological constraints. In such
problems, the inputs to the planner are source and destination
points and the output is expected to be a valid path that
respects the topological constraints. A concrete example of
such problems —and the topic of this paper—is planning for
a robot which is connected with a cable of limited length to
a fixed point in the operation space. This paper presents a
planning method for such problems by examining how the
configuration space manifold can be represented efficiently. We
introduce a convenient method for generating either parts or the
complete atlas for the manifold based on special ‘“cable events™.
Generating parts of the configuration space on-the-fly enables
improvements over the state of the art: (a) we decompose the
environment into cells as needed rather than an off-line global
discretization, obtaining competitive time and space complexity
for our planner, (b) we are able to exploit topological structure
to represent robot-cable configurations concisely, (c)we gen-
eralize the representation in order to examine cable-to-cable
contacts, which have been widely ignored in the literature until
now. Our results show the efficiency of the method and indicate
further promise for procedures that represent manifolds via
an amalgamation of implicit discrete topological structure and
explicit Euclidean cells.

I. INTRODUCTION

The classic problem of motion planning can be defined
as moving an object in a space while avoiding obstacles [1].
Many practical scenarios require more complicated variations
of the problem. Consider a robot which uses a cable as a
source of power or communication. Examples include high
power robots (e.g., street cleaning machines) that use cable
as a source of power and underwater or underground robots
that use a cable for transferring data. Presence of the cable
imposes two important constraints on the robot’s motion:
the cable length which limits the radius of the movement
(Fig. [Ta), and the topological constraints imposed by the
cable and obstacles in the environment (Fig. [Ib).

Recent research has focused on different aspects and vari-
ations of this problem [2]-[5]. The present work examines
the structure of the configuration space induced by a robot
tethered by a taut (possibly retracting) cable and proposes
to represent the manifold of configurations by a special
atlas [6]. In so doing, the topological regularity captured as
a graph, is naturally separated from the continuous aspects
captured as charts. The graph provides an understanding of
the complexity induced by the cable and nodes within the
graph provide sufficient topological context for points in R?
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Fig. 1: The limits caused by fixing the robot to a fixed point.

to represent configurations. The planning method we present
is quite straight forward using this representation.

This method creates a set of locally continuous charts
based on the set of cable events. Initially, we examine events
that occur when a cable touches or wraps around an obstacle,
and we show that they are intimately connected with a
subgraph of the visibility graph of the environment. We will
show that for a tethered robot this subgraph is in fact a tree
and thus the topological structure of the atlas representing
the configuration space forms a tree structure. This structure
provides context that allows path planning to proceed by
moving locally (either up to parent charts, or downward to
children charts) in the configuration space.

Next, we extend the set of cable events to consider cable-
to-cable interactions, by considering two different ways to
cross the cable: the robot can move over or under the
cableﬂ The method— we believe, uniquely— generalizes to
this case despite the fact that the involved topology becomes
rather more complex: events no longer occur at a countable
set of locations, the configuration space’s structure is no
longer separated easily. Nevertheless, because only parts of
the configuration manifold need be generated and the path
planning operations proceed exploring locally, the approach
succeeds. We believe that this underscores the strength of
dynamically computing relevant parts of the atlas on-the-fly
and treating the configuration space as if it were a just-in-
time computed data structure.

II. RELATED WORK AND CONTRIBUTIONS

Much prior work on motion planning for tethered robots
has the common underlying idea of creating a graph approx-
imation of the configuration space and using an efficient
method to search through the space of possible paths to
choose the optimal one among those in the homotopy class.

The work of Hert and Lumelsky [7] first considered
the problem of ordering the motions of multiple tethered

IWe do assume in this case, that the cable has infinite friction in
contacting itself.



robots by sorting a graph representing their paths. While
influential, the paper never addressed finding those orderings.
The work of Grigoriev and Slissenko [8] and Narayanan,
Vernaza, Likhachev, and LaValle [9] addressed the problem
by representing paths in a given homotopy class by defining
an alphabet used to describe the event of crossing a ray.
Determining whether two paths are in the same homotopy
class then requires comparison of their related strings. The
latter paper also addresses homologically equivalence. That
research group also explored the topic of winding constraints
for motion planning [4]. A radically different approach
is taken by Bhattaharya, Kumar, and Likhachev [2], who
provide an alternative way of defining homotopy classes of
paths in 2D based on the Cauchy Integral Theorem.

Igarashi and Stilman [3] designed an algorithm for creating
a graph of the configuration space manifolds based on cable
length constraint. Their idea of representing the configu-
ration space by multiple overlapping manifolds influenced
the present work. Recent work has also examined problems
beyond path planning in tethered robots [5].

Based on the body of prior work, we have identified
several distinguishing contributions of the current paper.
Firstly, the approach we propose avoids discretizing the
configuration space, instead using a subset of the visibility
graph to induce a natural cell decomposition of the space.
We need to clarify what we mean by decomposition versus
discretization: decomposition divides a space into subspaces
which are locally continuous whose union is equal to the
original space, whereas a discretization’s faithfulness to the
original space depends on its resolution. Secondly, it con-
nects motions of the robot to discrete events that occur with
the cable, each representing qualitative changes in the robot
and cable configuration. The idea of identifying events of
this form allows the method to be generalized so as to model
cable-cable interactions appropriately. Thirdly, we avoid off-
line creation of the entire configuration space, keeping data
structures that allow for dynamic generation of necessary
parts of the space. We represent topological context and
local metric information, where planning in the local chart is
trivial, and new charts are only created on-the-fly as needed.
And finally, the visibility graph has been previously used
in motion planning for non-tethered robots [10], [11], but
our construction of an atlas of charts leads to new insight
with regards to the cable’s dependency on the environment
topology and its connection with the visibility graph.

III. THE PRELIMINARIES

This section provides the fundamental definitions used
throughout the paper. We consider the problem of planning
for a non-oriented robot situated in a planar environment
with a cable tethered to a fixed point. It is assumed that the
cable of maximum length [ is always taut (e.g., through the
use of a retracting or spooling mechanism). And also that
the obstacles are known and polygonal.

Figs. 2aH2d]illustrate aspects of the problem. In an obstacle
free environment, motion planning for a tethered robot is
identical to an untethered robot with circular boundary of
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Fig. 2: Different scenarios of a tethered robot with respect to the presence
of obstacles.
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radius /. A path from p, to py is a straight line segment [12].
Let a — b denote the line segment connecting point a to b.
In moving from ps, — pg, an obstacle may affect the robots
motion directly (Fig. 2b) or indirectly via a cable-obstacle
contact which will bend the cable. Fig. In the latter
case, the radius of movement of the robot after that bend
is affected.

A. Events

Consider the fixed base point of the cable. Due to the lim-
ited length of the cable, the distance between the robot and
this point is never greater than [. Therefore, the accessible
area for the robot will be a circle with radius [ centered at
that point (Fig. [Ta). Interestingly, this is true for any contact
point as well. If the robot consumes !’ of its cable length
to reach the contact point, since the cable is always taut,
its distance from the contact point can never become greater
than [ — !’ unless it untangles itself (Fig.[3). This is the basis
for cell decomposition of the configuration space.

The contact points also define a homotopy class of tra-
jectories that the robot can follow in order to untangle the
cable and get back to the initial configuration (i.e., the cable
is completely retracted and the robot is at the origin of the
cable). Incidents that change the homotopy class of returning
trajectory and/or the boundaries of accessible area for the
tethered robot are referred to as events.

Definition 1. In the context of the cabled robot, there are
two kinds of events:

1) Cable to obstacle contact: wrapping event

2) Cable to cable contact: cable crossing event

In the following subsections, we are not concerned about
cable-cable interactions. We return to cable to cable interac-
tions in Section [V] where the method is extended.

B. Visibility Cells

A wrapping event will only occur when the cable touches
an apex of one of the polygonal obstacles. These apexes



are the same as the vertices of the visibility graph [13]. We
can construct a connected component of the free space of
the environment by partitioning the planar map into a semi-
algebraic set P, consisting of all the obstacles and the free
space Pyq. that is the complement of the set Py, [8].

Since planning the motion for each cell of a decomposed
configuration space is straight forward, we are going to
define these cells in a way that the union of them will cover
the configuration space. That is, each cell should contain all
the points so that no movement of the tethered robot from
any point in the cell to any other point in the same cell causes
an event. Therefore we can reach the following definition for
the cells of the configuration space in our context.

Definition 2. A visibility cell is a chart, (U,p), where
U C Pjree and homeomorphism ¢ is o(z,y) = (x,y), and
the collision free path between any two points in U is a
straight line segment inside U connecting the two points.

We identify cells uniquely by the following fields (Fig. [3):

e Base Point: as discussed in Section [[TI-A] each wrapping
point is used as a base point.

o Cable Length: determines the maximum distance be-
tween the robot and the base point of a chart.

e Parent Cell: is the cell describing the robot and its
cable configuration directly before occurrence of the
event. This information is crucial when the planner is
searching for paths and/or untangling the cable.

o Stitch Line: this is the line where one chart is connected
to another and can be considered as an interface between
them. Formally this line is the domain for transition map
between the two charts. Once the robot have crossed the
stitch line, a contact is made/released and thus the robot
will be transfered from a chart (cell) to the other.

Fig. [] illustrates a 3D model of how the visibility cells
are connected together.

C. The Maximum Ray Length Visibility Atlas

Since each cell is basically a chart, we next define an atlas
as a model of the decomposition.

Definition 3 (informal). A Maximum Ray Length Visibility
Atlas (MRLVA) denoted by A; is an atlas which contains
visibility cells whose stitch lines are edges of the visibility
graph of the environment. Each MRLVA has a graph associ-
ated with it characterizing its topological structure, which we
call Maximum Ray Length Visibility Atlas Graph (MRLVAG)
denoted by G 4, (see Fig. ).

A detailed procedure for creating a MRLVA and MRLVAG
is provided in the technical report [14].

It is important to note that number of child charts is always
less than or equal to the actual visibility graph’s vertices.

Lemma 1. In an environment with polygonal obstacles a
locally shortest path has a canonical form: in Ppee, it is a
straight line segment connecting the two end points. If one
of the end points meets an obstacle it is locally supporting
to P,y at the contact point [12].

Fig. 4: A 3D model of the visibility cells and the way they are connected
together. Each cell is in a different color. The robot is white and the cable
is colored yellow.
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Fig. 5: An example of a MRLVAG. The environment producing this
MRLVAG is given on the left.

Theorem 1. The MRLVA A, generated on Py describes
exactly the space of all the possible configurations of a robot
(non-oriented) and its taut cable with maximum length [ in
Pfree-

Proof. The tautness of the cable implies each segment of it
is a locally shortest path. So by Lemma [I] it is always in
form of a line segment in Py,.. and these line segments
connect apexes of the obstacles which are a subset of edges
of visibility graph, hence constituting all the configurations
of the taut cable, except the final segment connecting the
robot to the last apex. This last piece of information is
provided by the position of the robot represented as a point
in a visibility cell (that is a chart). Therefore, by connecting
this point to the last apex we will have the all the robot and
its taut tether’s configurations. O

Corollary 1. Given a MRLVA, by having a path from the
root to a chart (U;, @;) € A; and a point p € U; can identify
a unique configuration of a non-oriented robot and its taut
tether in Pppec.

Proof. Follows from Theorem [T] and Lemma [1} O

Theorem 2. The MRLVAG G 4, generated on Pppcc, is a
tree.

Proof. Suppose, to the contrary, that G 4, has a loop. This
implies two distinct sequences of cells and their transition
maps to reach same cell. Each sequence implies an ordering
of apexes, that is two distinct configurations of the cable for
reaching the same cell. This contradicts Corollary [I] O

IV. THE BASIC PLANNING ALGORITHM

Algorithm [I] shows the pseudo code for finding a path
from source point p, to destination point py. This algorithm



is greedy since it values the direct line connecting the source
point to the destination point more than other paths.

In order to initiate the algorithm the robot calls Find Path
for current chart given the source and destination points.
This function first considers p;, — pg as it is always the
locally shortest path [8]. If it cannot move directly toward
pa, it then checks whether a path can be obtained either
from its children or its parent. If there is no child or the
cable is not long enough, search in this branch of atlas tree
will be terminated. Otherwise, the planner searches through
all the children and stores the shortest path found in them.
Next it ensures no shorter path from the parent chart to
the destination point exists, otherwise the final path will go
through the parent chart instead.

Algorithm 1: The shortest path greedy algorithm

1: FindPath(ps, pgq, path)
2: mark this chart as visited
3: if pg is directly reachable then

4: if ps — pgq will not cause an event then

5: return path.Push(pg)

6: else

7 m. = Create a chart for the upcoming event

8: Set py, as the point where ps — pg crosses the stitch line of
the new chart

9: path.Push(pm)

10: minPath = mc.FindPath(pm, pq, path)

11: end if

12: else if p; might fall into one of this chart’s children then

13: Create child charts for each of the visible vertices of the obstacles

if the chart is needed
14: for all ¢ € children do

15: temp = path.Push(c.Base)
16: temp = c.FindPath(c.Base,pq, temp)
17: if temp is the shortest path to this point then
18: store it as minPath
19: end if
20: end for
21: end if
: if Parent # @ and is not visited yet then

23 temp = Parent.FindPath(Base, pq, path)
24: if temp is the shortest path to this point then
25: store it as minPath

26: end if

27: else

28: minPath = @

29: end if

30: return minPath

V. HANDLING CABLE-CABLE INTERACTION

This section discusses how to handle a robot crossing its
own cable and the importance of these events.

A. Cable-Cable Interaction Events

Previous work generally opts to ignore instances in which
a robot’s path crosses the cable. An exception is [3] wherein
the authors deliberately plan movements to avoid such paths.
The main reason of ignoring the cable-to-cable contacts is
that it is either impossible to model the cable contact points,
or it is computationally inefficient to do so (e.g., discretizing
the cable.) In contrast, we show that the MRLVAG can be
extended to consider events of this type so that the cable
configuration is stored dynamically.

(b)

Fig. 6: The complexities of the cable-to-cable contacts: (a) Uncountable
contact points and (b) changing movement radius.

Mainly, modeling this situation is complicated for two
reasons: (a)the cable can make contact to another segment
of the cable in uncountable number of points, (b) the radius
of feasible subsequent movements depends on the location
of the contact point (see Fig. [6).

When encountering the cable, the robot may either go
over the cable or under it. For these cases, the algorithm
is modified by checking whether the last point added to the
path will cause a cable crossing and making the binary choice
of over or under. Each time the robot crosses the cable a new
visibility cell is created whose set of stitch lines contains the
cable that the robot has recently crossed in addition to the
set of stitch lines of its parent (see Fig. [7).

B. Violation of the tree structure of MRLVAG

For cable interactions, in addition to wrapping events, over
and under events are needed, yielding the set {o, u, w}.

Theorem 3. With cable crossing events the configuration
space no longer has genus 0, i.e., the topological structure
is changed so that the MRLVAG is no longer a tree.

Proof. Figure [/| provides an example by construction. It is
possible to arrive at the same chart from two different charts,
implying that there are loops in the atlas structure (in this
case we can arrive at chart C either from chart A or B). [

The practical ramifications of this issue are resolved easily
by finding any spanning tree of the MRLVAG. Since the
MRLVA is itself complete, any of its spanning trees is
complete as well. Nevertheless, the question remains: which
spanning tree do we prefer? To answer this, we consider
the effect of the topology on the optimality of the robot’s
movement. The order in which the events occur is related to
how suboptimal the path taken by the robot can be.

Reexamining Fig. [/, we see that if the goal is reaching
chart C, then Fig. [7D] is a shorter distance than Fig. In
fact, if the movement to cross the cable is arbitrarily small,
then a robot going from chart B to chart C moves the same
distance as if cable crossing were ignored entirely.

C. Maintaining the Preferred Tree

With a preferable atlas tree, we must generate that tree.
If the robot knew which events were going to occur along
a trajectory to its destination, the shortest route would start
by connecting the current location of the robot to the first
event, the first event to the second event, and so on until
it connects the last event location to the destination. This
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event ordering is the order in terms of their location on the
cable (see Fig. [8). Thus, the algorithm is extended to swap
events that are out of order. In Fig. [7a] for example, although
the cable event happens before the wrapping event, since the
position of the wrapping event is before the cable event on
the cable, the algorithm will reorder them by replacing the
wrapping event behind the cable events.

D. Sequential Cable Events

The precise configurations that result from cable-cable
interactions depend on the physical properties of the cable.
For our theoretical treatment, we simplify these complexities
by assuming that whenever the cable wraps around itself
there is an imaginary pin that prevents the displacement
of the wrapping point as the robot moves. This models a
cable with infinite friction with itself. This allows one to
define a chart wherever the robot crosses a cable followed by
crossing the same cable except with the other type of action
(i.e., o followed by u or vice versa, see Fig. [0). The Base
of this chart is the imaginary pin point and the cable is the
stitch line. Such charts need not be stored permanently in the
atlas tree, as there can be infinitely many different charts on a
single cable (each depending on the location of the imaginary
pin). A chart that is created because of a sequence of cable
crossing events and all its children will be removed from the
atlas whenever the robot’s configuration leaves that chart.
This illustrates the power of dynamically generating parts of
the configuration space online.

VI. EXPERIMENTAL RESULTS

To demonstrate the method and evaluate its performance,
we developed a simulation environment and implemented the
algorithm in C# (see Fig. [T0).

Fundamental differences between our method and existing
work make picking appropriate criteria for comparison chal-
lenging. In particular, running time is problematic because
other state-of-the-art methods employ a discretization of the
configuration space. The running time is directly affected by
the discretization resolution, and memory utilization suffers
from the same illegitimacy. After careful consideration, it

Fig. 8: The best ordering of events for reaching from the base point to the
destination point. In other words, for having the shortest path, the points
with smaller number should be reached earlier.
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Fig. 9: An example of sequential cable crossing events.

was determined that the most equitable means for evaluation
was to give a measure of the proportion of configuration
space expanded by the algorithm, and the number of cells
(i.e., an indication of memory footprint) used in doing so.

For each test scenario we calculated the total volume of
the configuration space. We then compared it to the summed
volume of the cells that are sufficient for specifying the
robot and cable’s configuration: current visibility cell and its
parents up to the root. The results in Table [T| were generated
by examining all points of the configuration space for the
two test scenarios, and looking at the proportion of the
configuration space volume stored in memory. The minimum
and maximum rows report values for the cheapest and most
costly to represent, respectively.

Environment 1 Environment 2
Memory % of MRLVA Cell % of MRLVA Cell
Usage volume covered Count volume covered Count
Min 62.52 1 of 36 7.12 1 of 115
Max 74.8 9 of 36 21.47 13 of 115

TABLE 1: Results of the Experiments

The cable induces different degrees of topological com-
plexity in environments with differing numbers and complex-
ity of obstacles. To demonstrate this effect, we have chosen
the two test scenarios in Fig. [IT]

A. On-line generation versus off-line generation

Table [I] demonstrates the savings enabled by on-line
generation of the configuration space. They show that if we
were going to use a discretization of the configuration space
represented as an MRLVA, storing the current chart and its
ancestors would reduce the volume, the number of vertices in
the graph, and consequently the memory use and searching
time needed over the off-line methods used in the state-of-
the-art.

B. Cell Decomposition Technique

Although using the on-line atlas-based method reduces the
number graph nodes, it is not the only advantage of the
method. As explained in Section [III-B] when the atlas is
comprised of charts encoding the visibility properties of the
environment, a special data structure can be used to represent
the chart as a continuous space. Doing so requires only a
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Fig. 11: The two test environments used for presenting the results. Fig.
and Fig. are representative of simple and complex environments,
respectively. Gray is obstacle and green is robot.

constant amount of memory no matter how big or small (in
volume) the chart is.

Therefore, the number of charts used is a more important
factor than area. We computed the number of nodes in the
MRLVAG generated by the on-line method. The total number
of charts needed for the configuration space depends on the
complexity of the environment as it affects the manifold;
consequently these numbers are reported too. Results for the
test scenarios, shown in Table |1} illustrate that savings are
substantial in both simple and complex manifolds.

C. Cable Induced Manifold Structure

The presented data also lead to an additional observation
about memory saving in environments with different degrees
of topological complexity. At one end of the scale, simple
environments result in a configuration space that is mostly
planar and has a small MRLVAG. In these cases, large
volumes of the configuration space are captured with single
cells. The environment in test scenario 1 is an exemplar:
more than 60% of the configuration space is represented by
a single chart. At the other end of the scale, complicated en-
vironments increase the topological complexity (reflected in
large MRLVAGs) and have many visibility cells and charts.
The resulting graphs are large, but have the form of wide and
short trees. The environment in test scenario 2 illustrates this,
with a total of 115 cells, but at most 13 ever need to be kept
in memory. Thus, the cell decomposition approach results in
significant memory saving across environment types.

VII. CONCLUSION

This paper approaches planning for tethered robots with
a new perspective: previous work employs a discretization
of the configuration space along with an efficient search

method. In addition to the need to perform substantial off-
line precomputation, existing approaches are unable to repre-
sent cable-cable interactions, and either ignore this problem
or avert configurations which lead to them. The proposed
method solves the basic tethered robot planning problem in
a time and memory efficient way. Moreover, it is sufficiently
general to form a consolidated representation for several
other problems of interest, for example, winding constraints,
some knot-like tying motions, efc. The method is, thus, more
convenient and powerful than available approaches.

In this paper assumptions about the physical properties of
the cable (tautness and friction) allow for well-defined cable-
cable interactions. Our immediate future work is incorporat-
ing the MRLVA while connecting multiple robots together
with a cable. Another powerful property of the charts is
their independence. One may use this in selecting distinct
coordinate system representations for each chart to further
improve efficiency. We are also interested in generalizing
this concept to frictionless modeling of a cable as well.
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