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Abstract— Environmental monitoring, an important appli-
cation for robots, has begun to be addressed recently with
linear least squares regression techniques because they estimate
the values of measured attributes and their uncertainty. But
several challenges remain when performing adaptive sampling
in a communication-constrained distributed multi-robot setting.
When the attributes of interest evolve over time (as is natural for
many environments) any non-homogeneous spatial variability
may necessitate continual re-modeling of the field dynamics
and/or re-sampling of the field. This raises questions about
the robots’ division of labor and workload balance that can
be difficult to address when sample information is not stored
centrally. This paper tackles these coordination problems ef-
ficiently by introducing a sub-division-based modeling tech-
nique appropriate for distributed decision-making. We augment
Ordinary Kriging to enable representation of a field’s (poten-
tially non-homogeneous) evolution through Bayes filtering that
characterize the underlying dynamics. This approach not only
enables adaptive path planning in the field, but the sub-divided
areas lead to a straightforward formulation of the optimal
workload distribution through modification of an approximate
graph partitioning algorithm. Using a simulated multi-robot
sampling scenario, we demonstrate and validate the approach.
The experiments show good performance in terms of cross-
validation using real values and illustrate how hotspots are
identified and modeled, in turn affecting the division of labor.

I. INTRODUCTION

Environmental monitoring with robots encompasses a
wide range of important applications [1], [2]; for example,
a large-scale lake monitoring effort may help to detect
contamination and help ensure the safety of the water.
Recent research has made significant progress in predicting,
monitoring, and tracking large scalar fields; including exper-
imental work in aquatic, terrestrial, and subsoil settings [3]–
[5]. The underlying challenge addressed by such systems
stems from the measured data being sparse compared to
the large spatial areas/volumes of interest. Although these
problems are a natural fit for multi-robot systems, models
that can scale to large fields, while being sufficiently rich
to capture aspects of temporal variability and avoiding the
proliferation of tuning parameters, give inadequate attention
to practical considerations needed for distributed planning
and decision-making.

In the context of multi-robot adaptive sampling, this paper
considers two problems: (i) how does one model a non-
homogeneous time-varying field efficiently? (ii) how does
one distribute the robots’ workloads (since a changing field
may require non-homogeneous sample densities)? The ma-
jority of research, including recent work (e.g., [6]), focuses
on the first problem in isolation. In this paper, we consider
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that an appropriate answer to first problem must be consid-
ered in terms of the second problem and its context. The two
are directly related because complex, dynamic fields befit
multiple robots, each making autonomous decisions in an
online fashion.

This paper represents temporal dynamics as uncertainty
that is accrued with time. The rate of growth of this uncer-
tainty is estimated, simplifying the covariance (or variogram)
model, and reducing the complexity needed to treat the
relationship between space and time. This is a pessimistic
view born of the observation that treating data as out of date
is usually more practical than fitting high-order non-linear
models, especially given comparatively few samples. The
method we propose incorporates a Bayesian filter to track
this rate of growth of the field.

Non-homogeneity is captured by repeatedly dividing the
field representation in a recursive manner, while maintaining
the continuity of the field estimate (although, potentially
sacrificing it in the uncertainty estimate). These sub-divided
regions become units for assigning sampling tasks to each of
the robots so as to balance the total workload. The division
operation may cause the transfer of a region from one robot
to another in its local vicinity; only summary information
ever need be transferred between robots.

Specifically, the work contributes:
• An efficient recursive geometric sub-division of the field

to balance and distribute the multi-robot workload.
• A simple unified Ordinary Kriging formulation that explic-

itly integrates a time-based relationship into the interpola-
tor’s uncertainty for fields undergoing temporal evolution.

• A novel probabilistic filtering to update the environmental
model to estimate non-homogeneous field dynamics.

II. RELATED WORK

Linear least-squares estimation methods have been suc-
cessfully employed in robotics for spatial interpolation and
regional sampling. By way of recent examples, we mention
work of Singh et al. [7] in the Gaussian Process Regression
(GPR) framework, and Zhu et al. [8] via Kriging interpola-
tion. Both use equivalent minimum error-variance estimation
techniques that permit measured data to be interpolated in
a way that takes into account a statistical description of a
spatial variogram or covariance.

Employing these techniques to the model both spatial and
temporal variability is a classical problem [9]. Singh et al. [7]
used variations of these models with either stationary or non-
stationary, and separable or non-separable spatial temporal
covariance functions. However, these have many parameters,
which are difficult to provide estimates (or even priors) for



and may need to adapt over time. Ultimately, the changing
field is likely to be spatially non-homogeneous.

Several researchers are working on adaptive path planning
in dynamic fields. Their solutions, however, involve a given
(and fixed) covariance, augmented with other adhoc models.
For example, Williams and Sukhatme [2] model the spatial
dependency but add a plume-like process to generate a path
that tracks the gradient. Recently, Smith N. et al. [1] employ
an ocean phenomena forecast model.

Non-homogeneous temporal variability was recently tack-
led by [6], which is the closest work to the present paper.
However, in contrast to the preceding work, our method
decouples the spatial structure (captured via a purely spatial
variogram) from temporal structure, where parameters model
the latter change at a different time-scale to the former.
This simplified representation facilitates efficient multi-robot
communication. This is important because distributed multi-
robot systems are a natural fit to adaptive sampling problems.
We emphasize that our approach computes paths online
on the basis of newly observed variability (in contrast to
[10]). Also, the workload calculation only requires sharing
of a local model of the neighborhood’s dynamics. This
reduces communication overhead compared with recent work
in decentralized active sampling with a broadcast model [11].

III. PRELIMINARIES & PROPOSED ESTIMATOR

In this section, we briefly describe Kriging [9] as a prelim-
inary step, and then we present the proposed estimator for
time varying scalar fields. Let χ ⊆ R2 represent the spatial
domain of interest, and let T ⊆ R+ represent time.

A. Ordinary kriging estimator
We use the Ordinary Kriging (OK) estimator [9] to make

inferences on an unobserved value of the random process
Z∗(x0), where x0 is an unknown spatial location and x0 ∈ χ.
The OK estimator makes use of samples, Z(xi), which are
observed values at known spatial locations xi ∈ χ, i ∈ [1, n],
with a total of n observations. The estimate of Z∗(x0) is
obtained from λi and n samples of Z(xi) with

∑
i λi = 1

as such [9]:

Z∗(x0) =

n∑
i=1

λiZ(xi), λ = A−1b

A =

γ(x1, x1)· · ·γ(x1, xn)1

...
. . .

...
...

γ(xn, x1)· · ·γ(xn, xn)1
1 · · · 1 0

, b =

γ(x1, x0)

...
γ(xn, x0)

1

 .

(1)

The spatio-temporal semi-variogram function γ captures
the strength of spatial temporal relationships that represents
the statistical effect of (stationary) relationships in space
and time. However, the sorts of environmental attributes we
wish to sample may evolve differently in different locations
over time. Fixed variograms are inadequate to treat non-
homogeneous temporal variability. The Kriging Variance
(KV) σ2(x0) represents the prediction uncertainty. Z∗(x0)
and σ2(x0) give the spatial prediction of unobserved values
of the random process without considering either sensing
noise or position uncertainty [9]. Our former work [5] shows

(a) The robot maintains several temporal models each of which is
weighted and ultimately fused. Left: The robot traverses the field and
makes measurements at different times. Right: A prediction from the
field (µ with variance KV p) is used to update weights via Bayes’ rule
and new observation (labeled Truth Sampling).

(b) Illustration of differently weighted models of temporal evolution.
The increasing size of a circle over time shows the degree of temporal
variability of each αp, and how this is captured in the histogram of
~α, where the X-axis are scales α’s and the Y-axis are weights ω’s.
Fields may be split or merged. The propagated rates (the histograms)
are different in each region.

(c) Workload balancing in the multi-robot system via approximate graph
partitioning. Left: Initially the robots have evenly separated regions. The
field is updated as above in (a). Middle: Each robot constructs the as-
sociated sub-division graph. Right: An approximate algorithm facilitates
the movement regions between robots to balance the total workload.

Fig. 1: Overview of the proposed approach. Robots represent
temporal variability in the field as a form of uncertainty. See Sec. IV.

the explicitly separated sensing error from the variogram that
was ignored before.
B. A measurement noise interpretation and estimation

To deal and simplify with spatial temporal fields, we model
the passage of time as increasing error in the estimated
values. A sample taken a long time ago is treated as if
it involved significant measurement error by building on
our earlier work in [5]. We add a function of time to
the measurement error in order to represent the effect of
changes in the field at the sample location that may have
occurred since the measurement was made. The KV is used
as an indication for the potential usefulness of sampling
at a particular location. When time is incorporated in our
proposed approach, it affords a natural way to include data
staleness as part of that utility computation.

The simplicity of the method comes from the fact that
Gaussian noise as a measurement error, is additive in the OK.
The resultant variogram is γ = γY + (σ2

i + σ2
j )/2, where

γY is the basic variogram. Since most robotics work employs



formulations lacking such a treatment (cf. [7]), the derivation
appears in the on-line supplemental material [12]. This shows
a modified OK framework with different measurement errors.

Let ∆ti and ∆tj be the time elapsed since measuring
at xi and xj , respectively, where xi, xj ∈ χ. We sug-
gest a propagated linear function of time, N(0, ~α∆ti) and
N(0, ~α∆tj), where ~α is scaling vector parameters. A set
of values (~α, ~ω) is [(α1, ..., αP ), (ω1, ..., ωP )], p ∈ [1, P ],
where αp are temporal scale values, ωp are the (normalized)
weights, and P is the number of the bins. We estimate
~α by on-line using a probabilistic method: a Bayesian
filter [13] is maintained for each scale parameter. It is natural
to visualize ωp (

∑
p=[1,P ] ω

p = 1) as vertical lines in a
histogram for each αp. Simply looking at this histogram
allows one to interpret the temporal behavior of a region:
when comparatively large αp has significant probability ωp

then the field is fluctuating significantly over time. Detailed
derivations are in [12].

Let Ĝ(x, t) be a function that represents the algo-
rithm’s output such that Ĝ : (~α, ~ω) → R, where Ĝ
is

∑
p=[1,P ] α

pωp for χ. Then, we can derive one inte-
grated Aij =

∑
p=[1,P ] ω

pApij and bi0 =
∑
p=[1,P ] ω

pbpi0. We
define the modified OK for the weighted temporal evolution
model, which gives one integrated KV (denoted KV ∗):

Aij = γ
Y

(xi, xj) +
1

2
Ĝ(∆ti + ∆tj)

bi0 = γ
Y

(xi, x0) + Ĝ∆ti,

(2)

where Aij ∈ A, bi0 ∈ b, and i, j ∈ [1, n].
This yields the expected value of the evolving field by

aggregating each αp distribution with weight ωp, and (~α, ~ω)
describes the scale of the temporal evolution, modelled as a
linear change but with unknown drift.

IV. DISTRIBUTED ADAPTIVE SAMPLING
An overview of our approach is explained visually in

Fig. 1. There are two important steps: the first step is to
model the temporal evolution of the scalar field and to plan
an adaptive path, as shown in Figs. 1(a) and 1(b) explained
in Secs. IV-A and IV-B, respectively. the second step is to
distribute the sampling to multiple robots and to balance
workloads as illustrated in Fig. 1(c) explained in Sec. IV-C.
A. Estimation of adaptive field dynamics

This section presents an approach for estimating the
temporal evolution in Fig. 1(a). We can compute a predic-
tion Z∗(x0), and the variance KV p with regard to each
probabilistic model p. Then, the temporal variation of the
field can be updated by P (ωpt |ω

p
t−1, Z̃t−1, Zt), where Z̃t−1

is a past observation set [Z(x1), ...Z(xn)] and Zt is the
measurement Z(x0) at time t, and η is the normalization
constant.

Line 4 of Alg. 1 represents a prediction step as a hypothet-
ical probability distribution at time t based on (~αt−1, ~ωt−1)
is generated. This shows the update step and then Line 5 in
Alg. 1 represents the Bayes filter posterior. Finally, we have
a distribution, (~αt, ~ωt).
B. Adaptive path planning

Our path planning strategy consists of three parts: (1) sep-
aration of the regions, (2) generating queries (a set of

Algorithm 1 The FIELD DYNAMICS Filter
1: INPUT: at time t: field dynamics (α̃t−1, ~ωt−1), past observation set

Z̃t−1, and new measurement Zt.
2: OUTPUT: ωpt , ∀p.
3: for p = 1 to P do
4: (Z∗t ,KV

p
t ) = modified OK(Z̃t−1, α

p
t−1, ω

p
t−1)

5: ωpt = ηP (Zt|Z∗t ,KV
p
t )ωpt−1

6: end for

potential solutions) in continuous space, and (3) maximizing
a utility function to choose a solution. To better represent
temporal variability, the region χ is subdivided by recur-
sively decomposing the region into four equal quadrants,
where

⋃4
j=1 χij = χi (we simply assume four even sub-

regions, which facilitate the implementation by a quad-
tree). As we subdivide the regions recursively, we have
updated K non-overlapping regions χi, where i ∈ [1,K].
Therefore,

⋃K
i=1 χi = χ, and χi

⋂
χj = ∅, i 6= j, and

i, j ∈ [1,K]. Each χi has the individual rate of temporal
change Ĝi. Let Zt be a measurement at x0 at time t,
which updates a temporal evolution model in Section IV-
A. Thereafter, if x0 ∈ χi, we can separate or merge
regions based on the expected value of temporal change
difference between Ĝχi and Ĝχi1 , Ĝχi2 , Ĝχi3 , Ĝχi4 where⋃4
j=1 χij = χi. Based on this notation and definition, we

find the maximum difference of the change rate of the spatial
field and then subdivide the region so that our knowledge for
each region is maximized. Mcc is the Maximizing Cross-
Correlation (differentiation) between sub-regions:

M
i
cc ≡ maxb=[1,4](Ĝχi , Ĝχib ), ∀i. (3)

This determines that the χi region can be separated into four
sub-regions χi1, χi2, χi3, and χi4, or maintained within a
current region with regard to a new observation.

Next, we need the robot’s next goal position x0 at time t.
First, We select location x0 from a set of samples [x1, ..., xQ],
where Q is the number of potential locations. To generate the
query set in the continuous space, the idea is to distribute the
number of queries based on the importance of each region.
Since Ĝi is the expected value of the rate of change in χi,
we define the importance of the region χi to be proportional
to the area size |χi|×Ĝi. Randomly selected query locations
are produced in subregions in Fig. 4. This implicitly captures
the notion of hotspot sampling.

Finally, we pick the next goal position as the one that
maximizes the utility function from the generated queries xq ,
where q ∈ [1, Q]. Ideally, the utility represents how much
each query minimizes

∫
KV ∗, where r is the current robot

position and xq is an element of a query set. This is
approximated as a discrete space, yielding:

U(r, xq)q=[1,Q] =
∑

i=[1,Q],i 6=q

(KV
∗
(r, xi|(~α, ~ω)t−1, Z̃t−1)

−KV ∗(r, xi|xq, (~α, ~ω)t−1, Z̃t−1)).

(4)

Alg. 2 details adaptive path planning for this robot.
Lines 4 to 12 in Alg. 2 separates or merges the fields by
comparing Mk

cc and the threshold ε. The number of fields
can be increased and decreased when we split or merge the



Algorithm 2 The ADAPTIVE PATH PLANNER

1: INPUT: (~αt, ~ωt)k, ∀k, r, a split condition ε and a total number of
queries Q.

2: OUTPUT: x0 and χ′.
3: χ′ = Ĝ′ = NULL
4: for k = 1 to K do
5: if Mk

cc > ε then
6: χ′ = χ′ + [χk1, χk2, χk3, χk4]
7: Ĝ′ = Ĝ′ + [Ĝχk1 , Ĝχk2 , Ĝχk3 , Ĝχk4 ]
8: else
9: χ′ = χ′ + [χk]

10: Ĝ′ = Ĝ′ + [Ĝχk ]
11: end if
12: end for
13: factor=

∑K
k=1 |χ′k| × Ĝ

′
k

14: for k = 1 to K do
15: Nk = Q× |χ′k| × Ĝ

′
k÷ factor

16: end for
17: Generate random queries based on Nk at χ′k, ∀k
18: for q = 1 to Q do
19: Uq = U(r, xq)
20: end for
21: return x0 and χ′

fields. Lines 13 through 17 in Alg. 2 allocate the number of
queries in each field based on the importance of each field.
In line 19 of Alg. 2, we find a potential goal position that
maximizes a utility function.

Our method picks a single point rather than generating a
whole path. When we consider an optimal path, we need
to compute all possible paths, and then evaluate each total
KV ∗ to pick a unique path that (maximally) reduces the total
uncertainty. However, it is beneficial to adjust and re-plan an
on-line path when the field changes over time.

C. Distributed multi-robot sampling
Regions also have an associated graphical representation.

A region χ that is decomposed into K non-overlapping
regions χ1, · · · , χk, · · · , χK is represented, along with the
connectivity relationships, as a graph G = (V,E), where
a vertex vi ∈ V denotes the region χk, and an edge eij =
(vi, vj) ∈ E connects a pair of vertices vi and vj when
the associated regions are adjacent. Separate weights are
associated with both the vertices and edges.

With m robots, we wish to balance the workload by
the partitioning the field χ. This is achieved by splitting
the graph G into m sub-graphs Gi = (V,E) such that⋃m
i=1Gi = G. We expect K ≥ m, so each robot is associated

with at least one region. Although m can be any number,
for clarity of presentation, consider the two robot case, with
robot ri and rj . Let wiv and wie denote the weights of v
and e of the sub-graph Gi, respectively. Assuming Gi has L
number of χ and N number of edges, each wiva computed
by |χa| × Ĝa is the importance of the region, a ∈ [1, L].
wieb is the distance between va1 and va2 , b ∈ [1, N ] and
a1, a2 ∈ [1, L]. Then this problem can be formulated as the
following optimization problem:

arg min
(Gi,Gj)

[ max
i∈[1,m]

(
∑
∀a,b

(wiva + wieb))− min
j∈[1,m]

(
∑
∀c,d

(wjvc + wjed))].

(5)

When Gi of robot ri has the maximum total cost and Gj of

robot rj has the minimum total cost, i, j ∈ [1,m], our goal
is to minimize the difference of the total cost between Gi
and Gj , as illustrated in Fig. 1(c).

Since the m graph partitioning problem known to be NP-
hard [14], we adopt the heuristic of [15] because of its good
performance in adjusting the unbalanced partitions as well as
its practical running speed O(n3). A modification is neces-
sary. We alter the formula by considering the neighborhood
cost only to move a vertex (a region) to the other robot’s sub-
graph. The m robots initially split the regions evenly between
themselves. Each robot follows the steps in Section IV-B,
then updates its model of the temporal dynamics. The robots
communicate data about nearby regions like the size of
the region and the information describing the local field
dynamics in (~αt, ~ωt). Then the total cost associated with Gi
is
∑
wiv +

∑
wie, where vi and ei are subsets of Vi and Ei,

respectively.
Since the goal is to minimize the difference between the

maximum cost of Gi and the minimum cost of Gj , we move
{vi} to Gj . So, G

′

i = Gi−{vi} and G
′

j = Gj + {vi} where
G
′

i and G
′

j are new Gi and Gj , respectively. Suppose Ri
represents the total allocated cost of robot i and Sij is the set
of neighborhood nodes between Gi and Gj . Alg. 3 includes
further detail.

Algorithm 3 The DISTRIBUTED SAMPLING Algorithm
1: INPUT: sub-graphs Gm with M robots where m = 1, ...,M , current

robot positions rm.
2: OUTPUT: reconstructed sub-graphs Gm.
3: Compute costopt =

∑
cost(Gm)/M

4: for i = 1 to m do
5: Compute Ri =

∑
cost(Gi)

6: end for
7: Find Gi of maximum cost Ri and Gj of minimum cost Rj
8: Sij = {(vi, vj)|vi ∈ Gi, vj ∈ Gj}
9: costtemp =∞

10: for i = 1 to |Sij | do
11: R

′
i = cost(Gi − {vi}), R

′
j = cost(Gj + {vi})

12: if (Ri −Rj) > (R
i
′ −R′j) and (R

′
i −R

′
j) > 0 then

13: if (R
′
i −R

′
j) < costtemp then

14: a = i, costtemp = (R
′
i −R

′
j)

15: end if
16: end if
17: end for
18: G

′
i = Gi − {va} and G

′
j = Gj + {va}

V. SIMULATION AND EXPERIMENTS

A. Experimental setup
Using simulated data sets of chlorophyll gathered in the

central basin of Lake Erie that is susceptible to severe oxygen
depletion each summer [16], we verify the proposed methods
to predict the proper chlorophyll levels. In practice, such
data sets are spatially and temporally sparse. For example,
NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS [17]) gathers data daily or hourly using satellite
images with relatively low resolution that are affected by
weather conditions. Data from the National Oceanic and
Atmospheric Administration (NOAA) [16] is collected by
fixed buoys which are spread across large areas (e.g., 3 buoys
per 100 km2).



(a) Satellite and Aqua MODIS. (b) Simulated data at 100th and 500th

Fig. 2: This shows the plume-like ground truth data. 2(a) shows a
real satellite image and MODIS image of central basin of Lake Erie
in March 2012. The real satellite image of chlorophyll translated
to the real rate of chlorophyll, and then Gaussian plume model is
added into given sparse real data shown in 2(b).

To successfully run the experiments, we need to use
dense data. Thus, we interpolate chlorophyll data for Lake
Erie using the daily MODIS [17] data set (June to August
2012) and we opted to supplement the base field with a
contaminant plume. A Gaussian plume model using two axes
of diffusivity and velocity produces dynamics similar to what
one might see in the ocean or a lake [18]. Finally, we have a
interpolated dense data for 1000 steps over an 100 m2 area
to serve as the ground truth in Fig. 2.

Two separate experimental scenarios were used, both of
which assess the estimated variance in scalar fields con-
structed from measurements taken by robots:

1. Path planning and updating the temporal evolution model:
The robot initially samples 20 randomly selected field values
to construct the variogram, γY (h). The robot follows Alg. 2
to minimize temporal uncertainty over time and then
updates the evolution model. We assume that the robot’s
velocity is constant, approximately 5 − 7m/s. The greedy
planner, which is selecting the next goal position in order
to minimize the total uncertainty without considering the
temporal changes [5], is used to compare the quality of our
approach.

2. Distributed workload for multi-robot system:
Each robot has an even initial partition to collect measure-
ments and follows the above procedure. When the robots are
collecting data following Alg. 2, Alg. 3 constructs and ma-
nipulates the graph partitions and distributes the workloads
as observations are updated.
B. Results

Fig. 2 shows the models of field dynamics involving differ-
ent time and space. Fig. 3(a) demonstrates four regions that
have different field dynamics after the 69th step. Fig. 3(b)
represents 13 different field dynamics after the 217th step.
The field is separated resulting from Alg. 2. Some distri-
butions of (~αt, ~ωt) are similar to the uniform distribution
because when the region is separated, the field dynamics
initially are computed from the uniform distribution if there
are no past observations. It takes time to converge even
if it already has several observations. Fig. 4 shows the
steps for updating field dynamics over time. If the field
has sufficiently large difference between values describing
sub-regions and the current region, the current region is
split or merged. Based on the differing field dynamics, the
queries are distributed in the whole region. Once a split

occurs, each region’s temporal evolution model represents
the region better than before. This helps the robots sample
more efficiently in the hotspot region because KV ∗ increases
in the hotspot quickly over time.

(a) 4 separations at 69th step (b) 13 separations at 217th step
Fig. 3: A robot estimates and updates the temporal evolution
model with adaptive path planning. Each region has an original
field dynamics model. Each histogram represents how much of a
hotspot is formed. The X-axis is αp and the Y-axis is ωp.

Fig. 4: The initial temporal evolution weight set is an uniform
distribution, and then updated when the robot samples new data.
If Eχ is enough to split or merge, each region has different ω
distribution depends on the given data. X-axis is αp, and Y-axis
is ωp. The red dots are the tentative queries. Each region has
a different number of queries generated by the importance of
temporal dynamics. Two cases shows a different degree of temporal
variability depends on the histrogram of the region.

To evaluate the quality of our results, we show the cross-
validation by Mean Square Error between ground truth and
our estimation over time. We tested these for five trials
shown in Fig. 5(b) which yields better cross-validation than
the greedy planner. As we follow the scenarios of multi-robot
case, our approach shows better cross-validations with low
variance and faster convergence time.

Fig. 5(a) demonstrates the distributed workloads for two
robots. In Fig. 5(c), after a short amount of time, the differ-
ence of workload gradually approaches zero, showing that
the workloads are well distributed. However, when a field is
first split or merged, the workloads may be unbalanced for
some time as the field model needs to be updated and to
converge after the transition occurs. These transitions influ-
ence each robot’s workload in the field as the robot samples
new data. If each workload increases or decreases drastically,
the overall workload can fluctuate until it eventually settles
down with the split field. After the 350th step, the workload
increases for a while with the field redistribution by Alg. 3,
but when another transition happens at the 450th step, the
workload gradually decreases. In other words, This shows
non-monotonic after split transition and field redistribution.
We believe that this settling time is related to the initial
histogram distribution and redistributed split field.



(a) Distributed workload for two robots at 454th step

(b) Cross-validations with ground truth (c) Overall workload distribution
over time

Fig. 5: The workload is distributed to two robots while each robot
estimates and updates their field dynamics. 5(a) shows that the graph
represents the workload including field dynamics, the size of each
region, and the distance between nearby regions. 5(b) shows two
planners that are cross-validations with ground truth. One is based
on our approach with the ground truth over time. Another is the
traditional approach with the ground truth over time. Data are from
five separate trials of each case. 5(c) shows several sharp increases
when the transition of separation is happened in the region (e.g.,
75th, 140th, 200th, 350th, and 450th steps).

VI. CONCLUSION

This paper shows (1) how to model the temporal evo-
lution field and (2) how to distribute the robots’ work-
loads. The main idea is to treat the temporal variability
as uncertainty in the interpolator. This approach can be
seen as major simplification of a traditional spatio-temporal
interpolation [9], which although widely known has seen
comparatively little use in robotic sampling. The approach
we outline facilitates modeling non-homogeneous temporal
evolution as well as balancing the workload of the multi-
robot system with efficient communication overhead, thus
each robot adaptively has a balanced workload depending
on the temporal variability of the assigned field.

The experiments cross-validate the estimated field with
ground-truth values from the simulated data. The results
show generally good performance even though the data have
temporal variability. Moreover, in multi-robot experiments,
the robots have a balanced workload, sharing only field
dynamics and not the measurements themselves.

It is worth noting that the uncertainty estimates in this
work are used predominantly for determining when a lo-
cation should be sampled and then which robot should be
responsible for carrying out the measurement. The simple —
perhaps even simplistic— model suffices to ensure that the
distributed system responds online to changes in the field
by building an evolving model itself. A shortcoming of the
uncertainty model, however, is that for robots i and j, where

eij ∈ E, the KV ∗χi and KV ∗χj may not be continuous at the
shared boundary. This means, for example, that the quad-tree
structure may introduce some artefacts along the division
line. The method of [6] can address this, but it remains
unclear how such an implementation might be distributed
in communication constrained settings.
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