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Abstract— We consider optimization of the multi-robot task-
allocation (MRTA) problem when the overall performance of
the team need not be a standard sum-of-utilities (or costs)
model. We introduce a generalization which allows for the
additional cost incurred by resource contention to be treated
in a straightforward manner. In this variant, robots may have
multiple ways to perform a task (e.g., several routes to reach a
destination, or use of other shared resources), and interference
may be modeled as occurring when multiple robots use the
same resource. We show that the general problem is an NP-hard
optimization problem. We also investigate instances where the
interference results in linear or convex penalization functions.

We propose an exact algorithm for the general problem.
Then we suggest an optimal polynomial-time algorithm and
an approximation polynomial-time algorithm for the other
problems. The exact algorithm finds an optimal assignment in
a reasonable time on small instances. The other two algorithms
find an optimal assignment in a short time even if a problem
is of considerable size (e.g., in the linear case, 0.5786 sec
for 100 robots) and a high-quality solution quickly (e.g.,
in the convex case, 0.8462 sec), respectively. In contrast to
conventional approximation methods, our algorithm provides
the performance guarantee.

I. INTRODUCTION

The literature on multi-robot coordination has grown
enormously in the past few decades, reflecting the po-
tential advantages of a team of robots over a single
robot. Multi-robot task-allocation (MRTA) addresses op-
timization of collective performance by reasoning about
which robots in the team should perform which tasks. Even
the classical work advocated several different approaches,
such as behavior-based [1], [2] and market-based [3], [4] task-
allocation. Although resource contention and physical inter-
ference have long been known to limit performance [6], the
vast majority of MRTA work considers settings for which
interference is treated as negligible (cf. review in [7]). This
limits the applicability of these methods and computing
a task assignment under assumptions of noninterference
may produce suboptimal behavior even if the algorithm
solves the assignment problem optimally. Several authors
have proposed task allocation approaches that model or
avoid interference (usually physical interference), see for
example, [8], [9], [10]. These works, however, do not set out
to achieve global optimality, or understand the computational
consequences of a model of interference.

In this paper, we assume a centralized system in which all
information is known by a dispatcher, which optimizes task
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allocation. In practice this can be a dynamically elected robot
from amongst the team. We also assume that a robot can
perform only one task at a time, each task requires only one
robot to execute it, and that the allocation of tasks to robots
need consider only current (instantaneously available) infor-
mation and need not hedge against future plans. This problem
can be posed as an Optimal Assignment Problem (OAP),
which is well-studied, and can be cast as an integral linear
program and is in complexity class P. This conventional
MRTA problem does not specify how robots use resources
so it is unable for it to account for interference incurred
by sharing resources. Instead, it assumes that resources are
individually allocated to robots or, if shared, that they impose
no limits.

In our problem, however, robots may have choice in using
resources to perform tasks (e.g., several routes to reach a
destination), and the costs of performing the tasks may vary
depending on the choice. If several robots use the same re-
source (reflected in a relationship between their choices), we
allow interference between them to be modelled. Inter-agent
interference is treated mathematically as a penalization to the
cost of performing that task. In this manner, we can model
shared resources and generalize the conventional MRTA
problem formulation to include resource contention. The
result is an optimization problem for finding the minimum-
cost solution including the interference induced penalization
cost. We term this the multiple-choice assignment problem
with penalization (mAPwP).

In general, there are many ways penalization costs
could be estimated. When evaluation of the interference is
polynomial-time computable, we call this the mAPwP prob-
lem with polynomial-time computable penalization function
(mAPwPP). Even with a cheaply computable penalization
function, we show that mAPwPP is NP-hard. We also
investigate two other problems that have particular forms
of penalization functions: linear penalization functions and
general convex functions. We show that the two problems
are in P and NP-hard, respectively. We provide an exact
algorithm and two polynomial-time algorithms for the prob-
lems. The algorithms are domain-independent so that it can
be used for many multi-agent scenarios that have quantifiable
interference between agents.

The remainder of this paper is organized as follows.
Section II discusses the related literature on optimization
methods for MRTA. Section III defines the problem mathe-
matically, and Section IV describes the NP-hardness results.
Section V presents algorithms, Section VI describes experi-
ments, and the final section concludes.



II. RELATED WORK

The equivalence of the classical assignment problem by a
network flow problem has been well known for decades. This
may lead to the suggestion that one can prevent interference
by imposing additional constraints in the form of capacity
constraints in the flow formulation. This can be solved
by a centralized manner [11] or a distributed manner [12].
However, that approach models interference as a binary
penalization, which is zero or infinite, whereas incurred
by resource contention are more widely applicable if the
interference is modeled as a continuous function that in-
creases proportionally to the amount of interference. (See, for
example, our use of published and validated traffic models
in Section VI.)

An alternative is for the mAPwPP can be cast as a linearly
constrained 0-1 programming problem, with the penalization
function incorporated into the objective function with the
cost sum. The objective function is optimized over a polytope
defined by the mutual exclusion and integral constraints.
The results in this paper suggest that one can have an
optimal solution in polynomial time if the penalization
function is linear. When the penalization is more complex,
a common method to solve the problem is enumeration,
for example using the branch-and-bound method, but its
time complexity in the worst case is as bad as that of an
exhaustive search; rather more insight is gained by employ-
ing the method we introduce in this paper. Many practical
algorithms [14], [15], [16] are suggested in the literature, but
they also have exponential running time in the worst case.
Linearizing the complex penalization function could be an
alternative to have polynomial running time but has no
performance guarantee.

III. PROBLEM DESCRIPTION

A. Bipartite Multigraph

The mAPwP problem can be expressed as a bipartite
multigraph. Let G = (R, T,E) be a bipartite multigraph
consisting of two independent sets of vertices R and T ,
where |R| = n and |T | = m, and a collection of edges E.
An edge is a set of two distinct vertices denoted (i, j) and
incident to i and j. Each edge in G is incident to both a
vertex in R and a vertex in T , and pij is the number of
edges between two vertices. The vertices in R and T can be
interpreted as n robots and m tasks, respectively. An edge
is a way in which a robot may use resources, for which it
expected to select one among pij choices for a given task.
The precise interaction between resources is modelled via
penalization function, described next.

B. Multiple-Choice Assignment Problem with Penalization
(mAPwP)

Given n robots and m tasks, the robots should be allocated
to tasks with the minimum cost. Each allocation of a robot
to a task can be done via one of the pij choices where i
and j are indices of the robots and the tasks, respectively.
Each of the pij choices represents some set of resources used
by a robot to achieve a task. The multiple choices indicate

the resources can be used in many ways. We assume we
are given cijk, the interference-free cost of the i-th robot
performing the j-th task through the k-th choice. Let xijk
be a binary variable that equals to 0 or 1, where xijk = 1
indicates that the i-th robot performs the j-th task in the k-th
manner. Otherwise, xijk = 0.

In problem domains where multiple robots share re-
sources, use of the same limited resource will typically
incur a cost. We model this via a function which corrects
the interference-free assignment cost (i.e., the linear sum
of costs) by including the additional cost of the effects
of resource contention. We assume that the cost and the
penalization are nonnegative real numbers. We also permit
the cost to positive infinity when interference is catastrophic
(or, for example, only one robot is permitted to use the
resource). We assume n = m. If n 6= m, dummy robots or
tasks would be inserted to make n = m. Then a mathematical
description of the mAPwP problem is

min
n∑

i=1

m∑
j=1

pij∑
k=1

xijkcijk

+Q(x111, x112, . . . , x11p11 , . . . , xnmpnm ),

(1)

subject to
m∑

j=1

pij∑
k=1

xijk = 1 ∀i, (2)

n∑
i=1

pij∑
k=1

xijk = 1 ∀j, (3)

0 ≤ xijk ≤ 1 ∀{i, j, k}, (4)

xijk ∈ Z+ ∀{i, j, k}. (5)

We note —without proof, owing to limited space— that (5)
is superfluous because the constraint matrix satisfies the
property of totally unimodular (TU) matrix.1

C. Penalization

The penalization function maps a particular assignment
to the additional cost associated with the interference. In the
formulation of mAPwP earlier, Q(·) denotes the penalization
function in most general terms. The mAPwP becomes the
mAPwPP when Q(·) is computable in polynomial time.

The input domain for Q has ∼ O(max{n,m}! ·
(max{pij})min{n,m}) elements; in most cases a penalization
function is more conveniently written in some factorized
form. One example is if one is concerned only with the
number of robots using a resource, not precisely the identities
of the robots that are. If Ql(nl) is the penalization function
of the l-th choice where nl is the number of robots for that
choice, then the total penalization could be written as:

Q(x111, x112, . . . , x11p11 , . . . , xnmpnm )

= Q1(n1) +Q2(n2) + . . .+Qq(nq)

=

q∑
l=1

Ql(nl).

(6)

where q is the total number of choices in an environment. If
the robots are homogeneous, nl is the same as the number

1The standard treatment of the Optimal Assignment problem without a
penalization factor for task allocation (e.g., in [7]) considers only a bipartite
graph (i.e., ∀i∀jpij = 1). Although TU is well-known for the problem, we
believe this to be the first recognition of this fact for the problem above.
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Fig. 1: An example of the mAPwP problem. (a) Robots have multiple
ways to reach their destinations. Interference occurs when both R1 and R2

use the narrow passage in the center. (b) A weighted bipartite multigraph
representation of the example. (Weights are omitted for brevity.) An edge
represents a resource (a passage) to perform a task (to reach a destination).

of robots on the l-th choice. Otherwise, each robot has a
weight that represents the occupancy of the robot. If Q(·) is
convex, the mAP becomes the mAP with convex penalization
function (mAPwCP). Especially, it comes to be the mAP with
linear penalization function (mAPwLP) if Q(·) is linear.

D. An Example

An example of the mAPwP is shown in Fig. 1(a). The
goal is to minimize the total traveling time by distributing
robots (R1, R2 and R3) to three destinations (T1, T2 and T3).
R1 and R2 can use all the paths, but R3 cannot use the
narrow passage that T1 and T2 are located in because R3 is
wider than the passage. There will be interference if both R1

and R2 try to reach their destinations through the passage,
so a time delay is incurred, which must be added to the
total traveling time. A weighted bipartite multigraph that is
equivalent to the example is shown in Fig. 1(b). The graph
has |R| = |T | = 3 vertices, and every pair of vertices has
2 edges except for p31 = p32 = p33 = 1. In this example,
x111, x121, x131, x211, x221 and x231 are indicator variables
reflecting use of the narrow passage, and interference occurs
when more than one of these six variables are nonzero.

IV. NP-HARDNESS OF MAPWP PROBLEMS

In this section, we show the mAPwPP and mAPwCP
are NP-hard optimization problems, and the mAPwLP is
in P. We prove the corresponding decision problem of
the mAPwPP (D-mAPwPP) is NP-complete to prove the
problem is an NP-hard optimization problem [17]. Then we
briefly describe the mAPwLP is in P and show the mAPwCP
is NP-hard.

A. The mAPwPP is NP-hard

Theorem 4.1 The D-mAPwPP problem is in NP.
Proof. The decision problem (D-mAPwPP) simply asks
whether an assignment has cost less than a given threshold.
Input: n robots, m tasks, pij choices, a polynomial-time
computable penalization function Q, and costs of edges cijk,
a constant α.
Question: Is the penalized cost of a given assignment less
than α?
Certificate: An arbitrary assignment xijk.
Algorithm:

1 Check whether the assignment violates any constraints
2 Calculate the total cost of the assignment
3 Penalize the cost by the penalization function
4 Check whether the penalized cost is less than α

This is polynomial-time checkable so that D-mAPwPP prob-
lem is in NP. �

Theorem 4.2 The D-mAPwPP is NP-hard.
Claim. The proof is based on relation to the classic
boolean satisfiability problem. The 3-CNF-SAT problem asks
whether a given 3-CNF formula is satisfiable or not. It is
a well-known NP-complete problem. If 3-CNF-SAT ≤P D-
mAPwPP, then D-mAPwPP is NP-hard.

Proof. The reduction algorithm begins with an instance of
3-CNF-SAT. Let Φ = C1∧C2∧ ...∧Ck be a 3-CNF boolean
formula with k clauses over n variables, and each clause has
exactly three distinct literals. We shall construct an instance
of the D-mAPwPP problem where pij = 1 (i = 1, ..., n
and j = 1, ..., 2n) such that Φ is satisfiable if and only if
the solution of the instance of D-mAPwPP problem has cost
less than a constant α.

We construct a bipartite multigraph G = (R, T,E) as
follows. We place n nodes r1, r2, ..., rn ∈ R for n variables
and 2n nodes t1, f1, t2, f2, ..., tn, fn ∈ T for truth values
(true and false) of the variables. For i = 1, ..., n and j =
1, ..., 2n, we put edges (ri, ti) ∈ E and (ri, fi) ∈ E where
ti and fi ∈ T . The costs of the edges are given by cij . In
addition, we construct an assignment by assigning vertex i
in R to vertex j in T only when xij = 1 for i = 1, ..., n and
j = 1, ..., 2n. (Note that xij ∈ {0, 1}.)

Now, we construct a function ΦJ as follows. Each clause
in Φ is transformed to a sum of terms in parentheses so that
the terms correspond to the three literals in the clause. For a
positive literal, we put xij where i is equal to the index of the
literal and j = 2i− 1 whereas j = 2i for a negative literal.
Disjunctions of clauses are transformed to multiplications. A
penalization of an assignment is defined as

Q =

{
0 ΦJ > 0
N otherwise, (7)

where N is a large number. If ΦJ has a solution which makes
ΦJ > 0, the penalization is zero. Therefore, the cost of the
assignment is

∑
i,j cijxij and Q = 0 so the assignment has

the total cost
∑

i,j cijxij . Otherwise, it will have a large
nonzero penalization such as N. We can easily construct Q
from Φ in polynomial time.

As an example, consider the construction if we have
Φ = (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ ¬x5)

∧ (x3 ∨ ¬x1 ∨ ¬x2),
(8)

then the transformation is shown in Fig. 2. Φ has five
variables so five nodes and ten nodes are placed in R and
T , respectively. The nodes in R and T which have the same
subscripts are connected. We produce function:

ΦJ =(x11 + x23 + x48) · (x23 + x47 + x5·10)

· (x35 + x12 + x24),
(9)

and its penalization will be 0 or N depending on the
assignment.

We show that this transformation is a reduction in a little
more detail. First, suppose that Φ has a satisfying assignment.
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Fig. 2: The D-mAPwPP problem derived from the 3-CNF formula
Φ = (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x3 ∨ ¬x1 ∨ ¬x2). A satis-
fying assignment of Φ has x1 = 1, x2 = 1, x3 = 1, and x4, x5 either 0
or 1. Corresponding assignment is that x11 = 1, x12 = 0, x23 = 1, x24 =
0, x35 = 1, x36 = 0. The values of other elements do not affect the
satisfiability of Φ. This assignment makes ΦJ > 0.

Then each clause contains at least one literal that true is
assigned, and each such literal corresponds to a matching of
ri and ti. On the contrary, a literal assigned false corresponds
to a matching of ri and fi. Thus, assigning truth values to the
literals to make Φ satisfied yields matchings between R and
T . We claim that the matchings are an assignment which
makes ΦJ > 0. The assignment makes each sum of three
terms (in parentheses) at least 1 so that ΦJ, a multiplication
of the parenthesized terms, is greater than or equal to 1.
Therefore, by the construction, we can get the total cost of
the assignment and answer whether the cost is less than α.

Conversely, suppose that the D-mAPwPP problem has
an assignment that makes ΦJ > 0. We can assign truth
assignments to the literals corresponding to the matchings
between R and T so that each clause has at least one variable
which is true. Since each clause is satisfied, Φ is satisfied.
Therefore, 3-CNF-SAT ≤P D-mAPwPP. �

Corollary 4.3 By Theorem 4.1 and 4.2, the D-mAPwPP
problem is NP-complete. Therefore, the mAPwPP problem
is NP-hard optimization problem.

B. The mAPwLP is in P

Mathematically, the mAPwLP can be cast as an integer lin-
ear programming problem whose constraint matrix satisfies
the property of totally unimodularity. This problem can be
solved in polynomial time as described in [18, Corollary 2.2].
Therefore, the mAPwLP is in P.

C. The mAPwCP is NP-hard

The mAP with a convex quadratic penalization function
(mAPwCQP) is a proper subset of the mAPwCP, and is a
natural next step after examining mAPwLP. The mAPwCQP
has the form

min {xTHx+ cx : Ax ≤ b, x ∈ {0, 1}} (10)

where H is positive semidefinite and symmetric, c is non-
negative, A is TU, and b is integer.

The following binary quadratic programming (BQP) is an
NP-hard problem [19, Theorem 4.1]. The BQP problem is

min {yTMy + dy : A′y ≤ b′, y ∈ {0, 1}} (11)

where M = LTDL, D = I , d = 0, L is TU and nonsingular,
A′ is TU, and b′ is integer.
Theorem 4.4 The mAPwCQP is NP-hard.
Claim. If M is symmetric and positive semidefinite, we can
reduce any BQP to an instance of the mAPwCQP. Namely,
BQP ≤P mAPwCQP.

Proof. Since D = I , M = LTL. Then (LTL)T =
(L)T (LT )T = (LTL). Thus, M is symmetric.

For any column vector v, vTLTLv = (Lv)TLv = (Lv) ·
(Lv) ≥ 0. Thus, LTL is positive semidefinite. Therefore,
BQP ≤P mAPwCQP as we claimed. �

Lemma 4.5 mAPwCQP ( mAPwCP.

Corollary 4.6 By Theorem 4.4 and Lemma 4.5, the mAP-
wCP is NP-hard.

V. ALGORITHMS FOR MAP PROBLEMS

In this section, we devise algorithms for mAP problems.
The exact algorithm for the mAPwPP recursively enumer-
ates unpenalized assignments and their costs from the best
assignment in terms of optimality, by calling a combinatorial
optimization algorithm for each iteration. However, no enu-
meration and optimization algorithm exists for multigraphs,
so we must extend Murty’s ranking algorithm [20] and the
Hungarian method [21] to the weighted bipartite multigraphs.

Then we suggest polynomial-time algorithms for the mAP-
wLP and the mAPwCP. For brevity, we denote them by
the (optimal) mAPwLP algorithm and the (approximate)
mAPwCP algorithm, respectively. The algorithms consist of
two phases: the optimization phase and the rounding phase.
In the first phase, we relax the integral constraint (5) so
that a solution can be obtained in polynomial time, but it
can be fractional. Thus, the second phase rounds a fractional
solution to ensure the integrality of the assignment.

A. The Multiple-Choice Hungarian Method

We modify the labeling operations (the initialization and
the update operations) and the path augmentation from the
original Hungarian method. The labeling operations include
all pij edges incident to i and j. In the path augmentation
step, the minimum-weighted edge among pij is selected
as the path between i and j. The pseudocode is given
in Algorithm 1. The time complexity of this algorithm is
O(p2(max{n,m})3).

Algorithm 1 The Multiple-Choice (MC) Hungarian method

Input: An n×mp cost matrix which is equivalent to a weighted bipartite
multigraph G = (R, T,E) where |R| = n, |T | = m and pij = p, ∀{i, j}.
Output: An optimal assignment M∗ and its cost c∗.
1. Generate initial labeling l(i) = min1≤j≤m{cijk}, ∀i ∈ [1, n]

and l(j) = 0,∀j ∈ [1,m] and matching M .
2. If M perfect, stop. Otherwise, pick an unmatched vertex r ∈ R.

Set A = {r}, B = ∅.
3. If N(A) = B, update labels by

l(r) = l(r)− δ r ∈ A
l(t) = l(t) + δ t ∈ B

where δ = maxr∈R,t∈T−B{l(r) + l(t) + cijk}.
4. If N(A) 6= B, pick t ∈ N(A)−B.

4a. If y unmatched, u→ y is an augmenting path, then augment
M and go to step 2.

4b. If t is matched to z, extend alternating tree by A = A
⋃
{z},

B = B
⋃
{t}, and go to step 3.

Note: N(r) = {t|(r, t) ∈ Ge}, where Ge is the equality graph, and
N(A) =

⋃
∀r∈AN(r).
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B. The Multiple-Choice Murty’s Ranking Algorithm

We modify the partitioning part of the original ranking
algorithm. The set of all matchings is partitioned into subsets
by removing each vertex and edges of s-th matching. After
finding an optimal solution of each subset by Algorithm 1,
the vertices and the edges of the optimal solution are
recovered. In the removing and recovering procedures, pij
edges are removed and recovered all together. The other parts
are same as the original version. The time complexity of this
algorithm is O(sp2(max{n,m})4).

C. Exact Algorithm for the mAPwPP

1) Algorithm Description: The pseudocode is given in
Algorithm 2. We denote the s-th assignment before/after
penalization as Xs−/+ and its cost is cs−/+. Similarly,
Qs refers the penalization of the s-th assignment. In the
first iteration (i.e., s = 1), the algorithm computes the best
assignment without penalization (c1−). The penalization of
the best assignment (Q1) is computed and added to the cost
of the best assignment (c1+ = c1− + Q1). Then, the algo-
rithm computes the next-best assignment and compares its
unpenalized cost (cs−) with the minimum penalized cost to
the previous step (min{c1+, ..., c(s−1)+}). The MC Murty’s
ranking algorithm enables recursive computation of the next-
best assignment (line 3). The algorithm repeats each iteration
until either of the following conditions are met: when an un-
penalized cost is greater or equal to the minimum penalized
cost so that min{c1+, ..., c(s−1)+} ≤ cs−, or the algorithm
has enumerated all assignments (NΠ = mPn ×Πn,m

i,j pij).
Fig. 3 shows three cases in which the algorithm stops.

The algorithm enumerates, at most, su assignments, but
may enumerate fewer if case 1 or 2 occur. Therefore, su
is the upper bound of the number of assignments to be
enumerated. We assume pij = p,∀{i.j} so that the number
of choices is the same. If the pijs are not identical, then
we may add dummy edges with infinite cost. The exact
algorithm guarantees the optimality but has potentially
impractical running-time, as it may enumerate factorial
numbers (NΠ) of iterations in the worst case.

Algorithm 2 Exact algorithm

Input: An n×mp cost matrix which is equivalent to a weighted bipartite
multigraph G = (R, T,E) where |R| = n, |T | = m and pij = p, ∀{i, j},
and penalization functions Ql for all l.
Output: An optimal assignment X∗ and its cost c∗.
1 Initialize s = 1
2 while s < NΠ

3 Compute Xs and cs− /∗MC Murty’s ranking algorithm ∗/
4 if s = 1
5 Compute Qs and cs+ = cs− +Qs

6 s = s+ 1
7 else
8 if (cs− ≥ min{c1+, ..., c(s−1)+})
9 X∗ = Xs−1 and c∗ = min{c1+, ..., c(s−1)+}
10 return X∗, c∗
11 else
12 Compute Qs and cs+ = cs− +Qs

13 s = s+ 1
14 end if
15 end if
16 end while
17 X∗ = Xs and c∗ = min{c1+, ..., cs+}
18 return X∗, c∗

D. Optimal Algorithm for the mAPwLP

The first phase uses an IPM for linear programming (LP).
LP has the optimal solution on a vertex of a polytope. All
vertices of a polytope defined by a TU matrix are integer.
However, an IPM may produce a fractional solution in which
a problem has multiple optimal solutions [18]. In this case,
all optimal solutions form an optimal face of the polytope
[22]. It is then likely that an IPM converges to an interior
point of this optimal face, which is not integer. In this case,
we use the MC Hungarian method to choose one of the
multiple optimal solutions which is integer. The pseudocode
is not given due to the space limit but same with Algorithm 3
except Line 1: it uses an IPM for LP.

The time complexity of the IPM for LP that we used
is O((max{2n, nmp})3L) [23]2 where L is the bit length
of input variables. The Multiple-Choice Hungarian method
has O(p2(max{n,m})3) complexity. Thus, the overall time
complexity is O((max{2n, nmp})3L). We use MOSEK op-
timization toolbox for MATLAB [25], particulary msklopt
function.

E. Approximation Algorithm for the mAPwCP

The pseudocode is given in Algorithm 3. The first phase
uses an IPM for a convex optimization problem. The objec-
tive function must be twice differentiable to use the IPM.
In convex programming, the solution could be fractional
because not only are there multiple optimal solutions but
also it is the unique optimal fractional solution. We also
use the MC Hungarian method to round fractional solutions.
However, the rounded solution may not be an optimal integer
assignment. We provide its performance guarantee.

Theorem 5.1 The performance guarantee of the mAPwCP
algorithm is max {Q1,...,NΠ} −min {Q1,...,NΠ}.

2The state of the art is [24] whose complexity is O(
max(2n,nmp)3

ln max(2n,nmp)
L).



Proof. Let P1,...,NΠ
be assignments of an mAPwCP instance

and Q1,...,NΠ
be the penalizations of the assignments. With-

out loss of generality, all P1,...,NΠ have the same unpenalized
cost. Let J be the largest integer solution among P1,...,NΠ−1

and PNΠ
be the optimal assignment whose cost is J∗. Then

J = K +max {Q1,...,NΠ−1}
and

J∗ = K + ε+QNΠ .

Since J ≥ J∗, max{Q1,...,NΠ−1
} ≥ QNΠ

which means
QNΠ

= min{Q1,...,NΠ
}. Then

J − J∗ = J − (K + ε+QNΠ) = J − K− ε−QNΠ

≤ J − K−QNΠ = max {Q1,...,NΠ−1} −QNΠ

= max {Q1,...,NΠ−1} −min{Q1,...,NΠ}.
Since max {Q1,...,NΠ

} ≥ max {Q1,...,NΠ−1
},

J − J∗ ≤ max {Q1,...,NΠ} −min {Q1,...,NΠ}. �
Note that the performance guarantee is the difference be-
tween the maximum and the minimum penalization.

The time complexity of an IPM for a convex optimization
problem is O((max{2n, nmp})3.5L) [26]. Thus, the over-
all time complexity is O((max{2n, nmp})3.5L). We use
MOSEK mskscopt function for the optimization phase.
Table I summarizes the problems and algorithms.

TABLE I: A summary of the problems and algorithms.
Problem mAPwLP mAPwCP

Objective function Linear Convex
Complexity class P NP-hard

Algorithm Step I Linear programming (IPM) Convex optimization (IPM)
Step II The Multiple-Choice Hungarian method

Overall complexity O((max{2n, nmp})3L) O((max{2n, nmp}3.5L)

Performance guarantee Optimal max {Q1,...,NΠ
}

−min {Q1,...,NΠ
}

Algorithm 3 The mAPwCP algorithm

Input: An n×mp cost matrix which is equivalent to a weighted bipartite
multigraph G = (R, T,E) where |R| = n, |T | = m, pij = p, ∀{i, j},
and convex penalization functions Ql for all l.
Output: An optimal assignment X∗ and its cost c∗.
1 Compute X∗R+ and c∗R+ /∗ IPM for CP ∗/
2 Compute X̂∗Z+ and ĉ∗Z+ /∗ MC Hungarian method ∗/
3 X∗ = X̂∗Z+ , c∗ = ĉ∗Z+

4 return X∗, c∗

VI. EXPERIMENTS

We demonstrate that the exact algorithm works well and
returns a result in reasonable time for practically sized
cost matrices. The mAPwLP and the mAPwCP algorithms
produce solutions quickly for even larger matrices. We
implemented all the algorithms in MATLAB. The solution
quality is measured by a ratio of an approximated solution
to an optimal solution η = c′∗

c∗ ≥ 1. We assume that
n = m and pij = p, ∀{i.j} for all the experiments. As
we detail next, both randomly generated problem instances
and instances based on real-world scenarios were used to
validate the algorithms. Also, they are demonstrated with
physical robots in small-scale experiments in our laboratory.
First, we provide some detail on the particular penalization
models used.

A. Penalization Functions
A penalization function models the interference incurred

in a particular environment, and should consider the specific
aspects of the robots and environment. Simple examples
based on a factorization that adds costs as a function of the
number of robots utilizing a resource, include models in the
form of linear and an convex quadratic functions. Following
the form in (6), let those penalization models for use of the
l-th resource be

Ql(nl) =

{
βLnl + β′L nl ≥ 1
0 otherwise, (12)

and
Ql(nl) =

{
βCn

2
l + β′Cnl + β′′C nl ≥ 1

0 otherwise,
(13)

where βL, β
′
L, βC, β

′
C, and β′′C are constants.

For the multi-vehicle routing scenario, we used the classic
flow model developed by domain experts to quantify traffic
congestion [27]. Many models have been proposed in the
literature that compute a traffic speed v (m/s) according to
traffic density ρ (vehicle/m). We let ρ = nl because we only
consider an instantaneous assignment problem. We use an
exponential model for our application that travel time (sec)
is used as cost

Ql(nl) =


dl

vf

[
1−exp

{
− λ
vf

(
1
nl
− 1
ρj

)}] ρj ≥ nl

+∞ otherwise,
(14)

where vf is the free flow speed (when nl = 0), ρj is the jam
density, and λ is the slope of the headway-speed curve3 at
v = 0, and dl is the length of a resource that could be shared
with other robots such as a passage.

B. Random Problem Instances
A uniform cost distribution (U(0, 60)) is used to test the

algorithms. The penalization function (13) is used for the
exact and the mAPwCP algorithm, and (12) is used for the
mAPwLP (βL = βC = 1 and β′L = β′C = β′′C = 0). With
fixed p = 5, the size of the cost matrix (n) increases from 5
to 100 at intervals of 5 (10 iterations for each n). Table II
shows running times and solution qualities of our algorithms.
We also compare them with conventional methods such as
branch and bound (BB) and randomized rounding. We do
not report results for the BB method on mAPwCP because
the running-time is impractical and prohibitive even when
the instance size is small (e.g., n = 10). We display results
in multiples of 10, owing to the space limitations.

The exact algorithm finds an optimal assignment in a
reasonable time on small instances (n ≤ 8); even a small
problem has a huge search space (e.g., NΠ = 375, 000
when n = 5 and p = 5). The mAPwLP and the mAPwCP
algorithms quickly find solutions even if n is large. Our
methods are faster than the BB methods and similar to
the randomized rounding methods. However, the methods
we propose are the only to have polynomial running time.
The solution qualities of the mAPwCP is better than the
BB method (also the proposed algorithm has a performance
guarantee).

3The ratio of (infinitesimal) velocity change over (infinitesimal) headway
change.
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Fig. 4: Running time and solution quality of random instance. (a) The
mAPwLP and mAPwCP algorithms are slightly faster than the rounding
method whose worst case running time is exponential. (b) The mAPwCP
has better solution quality than the rounding method.

TABLE II: Running time and solution quality of random instances.
(a) The exact algorithm.

n 3 4 5 6 7 8 9
Running Mean 0.0041 0.0115 0.0208 0.0894 0.3324 3.8327 95.1580

time (sec) Std. dev. 0.0043 0.0047 0.0144 0.0721 0.2467 2.6072 93.7848

(b) The mAPwLP and mAPwCP algorithms and existing methods.
n 10 20 30 40 50 60 70 80 90 100

m
A

Pw
L

P Running Mean 0.2689 0.2743 0.2812 0.3003 0.3127 0.3406 0.3848 0.4333 0.5029 0.5786
time (sec) Std. dev. 0.0040 0.0091 0.0037 0.0064 0.0062 0.0046 0.0059 0.0081 0.0091 0.0067

Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

m
A

Pw
C

P Running Mean 0.2296 0.2421 0.2546 0.2898 0.3354 0.4005 0.4908 0.5835 0.7094 0.8462
time (sec) Std. dev. 0.0051 0.0068 0.0055 0.0044 0.0071 0.0116 0.0101 0.0150 0.0187 0.0311

Quality Mean η 1.0537 1.0314 1.0093 1.0092 1.0076 1.0104 1.0074 1.0067 1.0020 1.0030
(η) Std. dev. 0.0282 0.0353 0.0086 0.0078 0.0042 0.0105 0.0089 0.0100 0.0016 0.0020

B
&

B
:

L
P Running Mean 0.2688 0.2787 0.3235 0.4121 0.5442 0.7207 1.0080 1.4342 2.0219 2.7971

time (sec) Std. dev. 0.0160 0.0084 0.0040 0.0054 0.0162 0.0037 0.0070 0.0137 0.0080 0.0277
Quality Mean η 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R
ou

nd
in

g:
L

P Running Mean 0.2972 0.2662 0.2644 0.2797 0.3051 0.3598 0.4173 0.4392 0.5186 0.6446
time (sec) Std. dev. 0.0386 0.0146 0.0072 0.0053 0.0067 0.0619 0.0305 0.0121 0.0295 0.0706

Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R
ou

nd
in

g:
C

P Running Mean 0.2477 0.2841 0.2538 0.2816 0.3310 0.4203 0.4930 0.6485 0.7368 0.8602
time (sec) Std. dev. 0.0208 0.0266 0.0150 0.0041 0.0075 0.0164 0.0104 0.0564 0.0398 0.0249

Quality Mean η 1.5435 1.6424 1.2960 1.2140 1.1957 1.1746 1.1448 1.1075 1.1332 1.0651
(η) Std. dev. 0.6057 0.5695 0.3391 0.1603 0.2342 0.0614 0.0731 0.0342 0.0630 0.0342

C. Multi-Vehicle Traffic Routing Problems

A multi-vehicle routing problem is used as a representative
real-world application for our algorithms. We assume that
n homogeneous robots and n tasks are distributed across
p bridges in an urban area as shown in Fig. 6. The robots
and the tasks are uniformly distributed within the boundaries.
Distances from the robots to the tasks though the bridges are
collected by using the Google Directions API [28]. The raw
data are in meters (m) but converted to time (sec) according
to vf. Thus, the cost is travel time without congestion and
penalized by the increased time owing to congestion. With
fixed p = 5, n increases from 5 to 50 (3 to 9 for the exact
algorithm). Other parameters are set as follows:

vf = 16.67 m/s,
dl = {500, 300, 250, 400, 200} m,
ρj l = {120, 80, 70, 90, 80} robot/choice

λl = {0.1389, 0.1667, 0.1528, 0.1944, 0.1389} s−1

where l = 1, ..., 5. The parameters reflect the characteristics
of the real-world multi-vehicle routing problem.

We use (14) for the exact algorithm. However, our imple-
mentations for Algorithm 3 do not allow a complex expo-
nential objective function like (14). Thus, we approximate
(14) to a linear and a convex quadratic function such as (12)
and (13). An example of the approximations is shown in Fig.
5(a). The quality of the approximation is measured by the
sum of squared residuals. Table III shows the approximation
results of all penalization functions of the five bridges.

TABLE III: Penalization function approximation results of the five bridges.
Residuals

Fitting type Bridge 1 Bridge 2 Bridge 3 Bridge 4 Bridge 5
Linear 301.2 408.8 531.1 389.6 283.8
Convex 22.92 70.61 124.1 52.28 49.21
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Fig. 5: (a) We approximate a complex exponential funtion to a linear and
a convex quadratic function. (b) Solution qualities when the approximated
functions are used for all five bridges.

The Fig. 5(b) shows solution qualities when the approxi-
mated functions are used. For each instance, we compute an
optimal assignment by the exact algorithm when the original
model is used. Then we compare it to the assignments when
the approximated functions are used. As a result, the solution
qualities are good (less than 1.024) so those approximations
are acceptable.

Fig. 7 and Table IV show the results (10 iterations for each
n). The results are similar to the random instance case. This
experiment shows that our algorithms can model realistic
scenarios of robotic applications.

D. Physical Robot Experiment

We demonstrate that our method achieves global opti-
mality even interference is not negligible. Fig. 8 shows the
experimental setting. Two iRobot Creates (R1 and R2) have
tasks of visiting the other robot’s position on the opposite
side of environment (T1 and T2). There are two passages to
reach their destinations (shown as p1 and p2 in the figure).
We use travel time as the cost and (14) as the penalization

6: Robots and tasks are
located across five bridges.
n robots and tasks are uni-
formly distributed in the
upper and lower boxes, re-
spectively.
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Fig. 7: Running time and solution quality of the multi-vehicle routing
problem. (a) The mAPwLP and mAPwCP algorithms quickly produce
solutions. (b) The qualities are close to one for both algorithms.



TABLE IV: Running time and solution quality of the multi-vehicle routing
problem.

(a) The exact algorithm.
n 3 4 5 6 7 8 9

Running Mean 0.0044 0.0088 0.0395 0.1298 0.5913 4.2897 126.0774
time (sec) Std. dev. 0.0015 0.0045 0.0290 0.1171 0.8772 6.8811 202.1757

(b) The mAPwLP and mAPwCP algorithms.
n 5 10 15 20 25 30 35 40 45 50

m
A

Pw
L

P Running Mean 0.2634 0.2627 0.2678 0.2710 0.2753 0.2855 0.2846 0.2935 0.3017 0.3118
time (sec) Std. dev. 0.0069 0.0054 0.0054 0.0073 0.0032 0.0108 0.0072 0.0037 0.0024 0.0033

Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

m
A

Pw
C

P Running Mean 0.2293 0.2232 0.2307 0.2417 0.2496 0.2589 0.2779 0.2976 0.3170 0.3515
time (sec) Std. dev. 0.0159 0.0034 0.0059 0.0058 0.0081 0.0056 0.0076 0.0133 0.0045 0.0040

Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(a) Both R1 and R2 use p1. (b) R1 uses p1, and R2 uses p2.
Fig. 8: Two cases of resource use by two mobile robots. (a) Robots use
the same resource so that interference is occurred. (b) Robots use different
resources to avoid the interference.

function. We compute the assignment with Algorithm 2. We
assume that R1 and R2 are identical. Space constraints and
the data from the previous experiments forced us to omit
reporting quantitative results.

When the robots move through the shortest path to the
destination to attain the minimum travel time, they choose
the same passage p1 (Fig. 8a). However, this choice incurs
interference between the robots. When the assignment is
penalized, the best assignment is changed to the other
assignment: R1 uses p1 and R2 uses p2 (Fig. 8b). When
the robots use the same resource p1, it takes 102 seconds to
complete the tasks whereas the interference-free assignment
takes 87 seconds.

VII. CONCLUSION

In this paper, we define the mAPwP problems and show
that the mAPwPP, mAPwCP are NP-hard and mAPwLP
is in P. We present an exact algorithm that generalizes
Murty’s ranking algorithm to solve the matching problem
for weighted bipartite multigraphs, which employs the Hun-
garian method as a subroutine (which we also general-
ize to the multiple-choice case). In addition, we propose
two polynomial-time algorithms for the mAPwLP and the
mAPwCP. The mAPwLP algorithm produces an optimal
assignment, and the mAPwCP algorithm computes a solution
with bounded quality. In the experiments, we model inter-
ference among robots by introducing several penalization
functions; the results show that the exact algorithm finds an
optimal solution, and the mAPwLP and mAPwCP algorithms
produce an optimal and a high-quality solution quickly.
We also conduct physical robot experiments to show how
resource contention aggravates optimality in practice and that

the proposed algorithm achieves global optimality when an
interference model is included.
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