
Tunable Routing Solutions for Multi-Robot Navigation via the

Assignment Problem: A 3D Representation of the Matching Graph

Lantao Liu and Dylan A. Shell

Abstract— In scenarios in which new robots and tasks are
added to a network of already deployed, interchangeable
robots, a trade-off arises in minimizing the cost to execute the
tasks and the level of disruption to the system. This paper
considers a navigation-oriented variant of this problem and
proposes a parametrizable method to adjust the optimization
criterion: from minimizing global travel time (or energy, or
distance), to minimizing interruption (i.e., obtaining the fewest
number of robot reassignments), and mixtures in-between.
Paths are computed by a task-allocation formulation in which
the destinations of newly deployed robots are added to an
existing allocation. We adapt the graph matching variant of the
Hungarian algorithm—originally designed to solve the optimal
assignment problem in complete graphs—to construct routing
paths by showing that there is an interpretation of the sparse
Hungarian bipartite graph in three dimensions. When new
agent-task pairs are inserted, the assignment is reallocated in an
incremental fashion in linear time (assuming traversal choices
are limited in number). The algorithm is studied systematically
in simulation and also validated with physical robots.

I. INTRODUCTION

Several multi-robot applications involve elements that can

be formulated as the problem of moving a team of mobile

robots from their current positions to a set target locations

whilst minimizing some collective cost, e.g., shape morph-

ing [1], deployment [2], formation control [3], and task real-

location [4]. This paper formulates and proposes a solution

to an incremental version of the problem: a set of robots at

known locations are added to a network of already deployed

(identical) robots and, additionally, a set of new desired

locations is specified. The problem is to decide which nodes

should be moved and to where.

One simple solution is to have each newly added robot

move toward the new target nearest to it. If the time to

reach all the targets is important, or if robots are limited

in where they may travel, then it may be better to have

a deployed robot move to the target and fill its vacancy

with another robot. With interchangeable robots, a whole

chain of robots may simultaneously move toward the target,

each robot taking the place of the last. Potential optimization

criteria include: the distance travelled (total cost), disruption

caused by redeploying robots (number of adjustments), time

taken (deadline for completion).

We describe how opposing criteria (the minimization of

summed distances versus number of robots redeployed) can

be balanced however desired by using a parametrizable

approach. Our formulation considers a graph on which

Department of Computer Science and Engineering, Texas A&M University
{lantao, dshell}@cse.tamu.edu A preliminary version of this work appeared
as a poster in the Workshop on Network Science and Systems, ICRA 2010.

traversability costs and constraints are encoded (via weights

or omitted edges). The method produces a routing in which a

subset of the agents move along edges toward target vertices.

Computing a solution for the addition of an agent-target pair

costs linear time in (typical) problem instances where the

graph has bounded degree. The method permits addition of

multiple agents and targets simultaneously, because sequen-

tial treatment (e.g., via repeatedly using single source shortest

path algorithms) may fail to find the global optima.

We show that the path routing problem is modelled as a

weighted matching problem on a two-layered, sparse graph

which can be visualized in three-dimensions. Routings are

produced by applying a variant of the classic Hungarian

Algorithm. We present an extension of the original (complete

bigraph) method to handle sparse bigraphs and include

the conditions under which valid solutions are produced.

Prior work has considered incremental assignment solutions

(cf. [5], [6]) but our focus is on the particular instantiation

arising from path routing and, thus, we address insertion of

multiple robots and targets, sparsity, and disruption.

II. RELATED WORK

A. Task reallocation, formation control and morphing

This paper connects research focused on enforcing some

metric/shape constraints (e.g., formation control [7], [8]) with

techniques for reassignment of robots to tasks, e.g., [4], [9].

Shifting smoothly from one shape to another —sometimes

called morphing— can be performed using the method we

describe, but is approached in quite distinct ways in the

literature (cf., [1] and [10]). A recent example of reallocation

and formation work together is [11], which describes a

polynomial time method to extract a set of robots from a

larger group in order to perform some new task, but while

also minimizing interference induced by the set.

B. Related approaches based on the Hungarian Algorithm

The Hungarian Algorithm is one of the most well-known

assignment algorithms for solving n × n assignment prob-

lems, i.e., those with n agents to be uniquely assigned to

n tasks. It was proposed by H. W. Kuhn and refined by

J. Munkres [12] to have time complexity O(n3). Recently,

the bigraph variant of the algorithm has been extended in

interesting ways. Toroslu et al. proposed the incremental

assignment algorithm [5] that finds a new solution with cost

O(n2) after a new pair of vertices are added to a weighted

bigraph with known matching. Motivated by examples in

the transportation domain, Mills-Tettey et al. [6] proposed

the Dynamic Hungarian Algorithm to handle cost changes

Fig. 1: An augmenting path is a sequence of alternating matched (bold) and
unmatched edges, with the first edge and last edge unmatched. We say the
edges are augmented when the matched and unmatched edges are flipped.

with time complexity of O(kn2), where k is the number of

cost changes. Straightforward extensions to both algorithms

allow deletions while preserving their complexities. Impelled

by the particular bigraph arising from the routing problem,

this paper examines the effect of sparsity. using the same

incremental matching approach, viz. execution of stages of

the Hungarian Algorithm, showing that a linear time solution

is possible when the vertices have bounded degree.

Algorithm 1 The Hungarian Algorithm

Input:
An n × n assignment matrix represented as the complete
weighted bigraph G = (X,Y,E), where |X| = |Y | = n.

Output:
A perfect matching M .

1: Generate an initial labelling l and matching M in Ge.
2: If M perfect, terminate algorithm. Otherwise, randomly pick

an exposed vertex u ∈ X . Set S = {u}, T = ∅.
3: If N(S) = T , update labels:

δ = minx∈S,y∈Y \T {l(x) + l(y)− w(x, y)}

l
′(v) =







l(v)− δ if v ∈ S,
l(v) + δ if v ∈ T,
l(v) otherwise.

4: If N(S) 6= T , pick y ∈ N(S) \ T .
(a) If y exposed, then u → y is an augmenting path

then augment matching M and go to step 2.
(b) If y matched, say to z, extend the tree: S = S

⋃

{z},
T = T

⋃

{y}, and go to step 3.
Notes:

• Equality graph Ge = {e(x, y) : l(x) + l(y) = w(x, y)}
• Neighbor of vertex u ∈ X: N(u) = {v : e(u, v) ∈ Ge}

III. PRELIMINARIES

The graph matching formulation of the Hungarian Algo-

rithm [12] appears in Algorithm 1. It treats the input n × n
utility matrix as a complete bipartite graph (or bigraph)

G = (X,Y,E), in which X, Y respectively represents

the set of agents and tasks, and E is the set of edges

weighted by the utilities between agent-task pairs, |E| ≤ n2.

The optimal assignment is sought as a maximally weighted

perfect matching M where each agent in X is uniquely

assigned to a task in Y . The algorithm augments the set of

matched edges by searching for and flipping an augmenting

path, as defined in Figure 1. In Algorithm 1, steps 2–4

describe the searching and flipping procedure. We call a

single iteration of this procedure a stage (see Figure 2).

Note that each stage finds exactly one augmenting path

which increases the length with exactly one matching edge.

Thus, the algorithm requires at most n stages to obtain all

n matching edges, which form the optimal solution. The

algorithm works well on the complete n2 edged bigraph, and

we show below that it also works for some non-complete

bigraphs under certain conditions. We use the term sparse

bigraph when a bigraph satisfies |E| < n2.

Fig. 2: (left) Two matched edges found after running two stages of the
algorithm; (right) A perfect matching consisting of three matched edges is
found after one more stage (by augmenting path a3 → t2 → a1 → t1).

Theorem 3.1: If we define xij such that:

xij =

{

1 if e(i, j) ∈ E,

0 otherwise

then for any sparse bigraph with each partition of size n
(|X| = |Y | = n), the Hungarian Algorithm outputs an

optimal solution if and only if there is a set {xij} with

|{xij}| = n and satisfying:
n
∑

i=1

xij = 1, j = 1, · · · , n
∧

n
∑

j=1

xij = 1, i = 1, · · · , n. (1)

Proof: Necessity follows the constraint definition of

the assignment problem. Sufficiency: |{xij}| = n implies at

least n edges in the bigraph. Consider two cases:

1) if |E| = n and all corresponding xij satisfy (1), indicating

that each vertex has unit degree, then the edge set forms a

perfect matching and optimal solution.

2) if n < |E| < n2, and there is a subset {xij} that

satisfies (1), then the Hungarian algorithm can only fail to

produce an optimal solution because it was halted before

finishing n stages. The interruption must be that it failed

to find an augmenting path. Given the procedure employed,

this failure in a sparse bigraph means only an incomplete

path with odd number of vertices exists. In other words, the

bigraph is not fully connected and there are isolated sub-

graphs, a contingency illustrated in the sub-graph formed

with a1, a2 and t2 in Figure 3(right). It is impossible to

find a perfect matching in sub-bigraphs with odd numbers

of vertices and, therefore, it is impossible to find a global

matching solution for the whole graph, contradicting (1).

Fig. 3: (left) A matching in a sparse bigraph, weights omitted for clarity. In
this example, the matching solution is unique as shown in the bold edges,
and forms the optimum; (right) The algorithm halts on this arrangement
since no augmenting path is rooted at a2. No perfect matching is found.

Two corollaries follow for sparse bigraphs:

Corollary 3.2: In a sparse bigraph, a Hungarian stage

continues without halting if and only if an augmenting path

can be found connecting a free pairwise agent and task.

Corollary 3.3: Newly introduced agents and tasks can be

incrementally assigned if and only if (i) one can connect

the pairs to the built bigraph (i.e., the bigraph property still

holds after connection); and (ii) one can find augmenting

paths between the sets of newly introduced agents and tasks.

IV. FROM ASSIGNMENT PROBLEM TO ROUTING

We are given a set of deployed robots described as a weighted

graph: robots at deployment locations are represented as

vertices, while edges connect each robot to the locations they

can move to, weighted by traversal cost. When new agents

and target positions are inserted, the objective is to compute

an efficient traversal that ensures every target is serviced

by a robot. Target locations are treated as tasks and a task

reassignment computed. This forms a sequence of robot/task

replacements which is a routing through the graph.

The process is illustrated in Figure 4: in 4(a), a new

agent-task pair is introduced to an existing perfect match-

ing (higlighted in bold): vertex a4 —leftmost vertex in top

partition— and t4 —rightmost vertex in bottom partition—

are the newly inserted agent and task, respectively. A single

incremental stage obtains the new assignment shown in 4(b).

The vertices in each partition are shown on a 1D line in 4(b),

but when the two partitions are vertices on a 2D plane, the

bigraph can be visualized in 3D as in 4(b). The vertices in the

bottom layer represent the task locations and the vertices in

top layer are the agents currently assigned or to be assigned.

Before the introduction of new agent-task pairs, the positions

of vertices in top layer and bottom layer are vertically aligned

and are pairwise matched with bold edges, indicating a

“stabilized” state with all robots at assigned destinations.

When a new agent-task pair is inserted, an additional stage

of the Hungarian algorithm will find an augmenting path

that will connect this new agent-task pair. The matched

edges in this augmenting path provide the global routing

solution. In Figure 4, for example, the augmenting path of

a4 → t1 → a1 → t2 → a2 → t4 means that agent a4 should

move to task location t1, and a1 move to t2, and a2 to t4.

This is reflected in the top layer in Figure 4(c); the projection

of the matching (as arrows) to this plane is a routing solution.

Theorem 4.1: So long as the 2D network for the routing

problem is connected, there are always augmenting paths.

Proof: The connectedness of the graph means a routing

path exists between any two vertices. Since any routing path

represents a specific solution, we can always find at least one

solution for any agent-task pair.

(a) (b)

(c)

Fig. 4: The bigraph representing a single-pair routing problem. (a) An
existing bigraph with perfect matching (bold edges) is supplemented with
a new agent and task; (b) A new perfect matching is found after a single
stage of the algorithm; (c) When the tasks and agents are actually planar
locations then the bigraph picture is more precisely viewed in 3D, the top
layer shows the resulting routing solution.

Fig. 5: An example topology with only nearest neighbors connected.
(left) Vertices 6 and 6′ are newly inserted robot and task, respectively.
(right) The corresponding sparse bigraph visualized in three dimensions.

This indicates that one may simply connect the newly

introduced agent-task pair with a given graph and, provided

one ensures each element is connected with at least one edge,

the search for a specific parametrized path will yield a result.

V. CONTROLLING PATH PROPERTIES

Two properties of the resultant routing paths are important:

(1) The summed cost/time for traversing the edges, which one

wishes to minimize; (2) The number of reassigned agents,

since usually each agent reassignment bears a cost.

The Hungarian algorithm maximizes utility, while a typical

routing problem aims at minimizing the path length. We

transform the minimization problem to a maximization one

by negating all input values. Also, once all agents reach their

targets they should maintain their “vertical” matching, thus,

we assign the utility of this edge with a value at least as

large as other outgoing edges. If we define utility matrix U :

U =







u11 u12 . . . u1n

.

.

.
.
.
.

. . .
.
.
.

un1 un2 . . . unn







,
then uij ≤ 0, and uii ≥ max{uij}, ∀j. If e(i, j) /∈ E, then

we let uij = −∞. The larger the value of uii, the more

likely that edge e(i, i) will remain matched in subsequent

Hungarian stages. Let diag(U) = [u11, u22, ..., unn]. Then,

with scaling parameter λ ∈ [0, 1], we obtain a new diagonally

scaled utility matrix:

U ′ = U + (λ− 1) diag(U) =











λu11 u12 . . . u1n

u21 λu22 . . . u2n

.

.

.
.
.
.

. . .
.
.
.

un1 un2 . . . λunn











. (2)

Only the diagonal is scaled, i.e., diag(U ′) = λdiag(U).
We initialize each uii with uii = max

j
{uij}, then by tuning

λ ∈ [0, 1], the diagonal utilities vary as u′
ii ∈ [uii, 0]. Con-

sider the example in Figure 5. Vertices 0–5 are previously de-

ployed robots and Vertices 6 and 6′ are the newly introduced

agent and task. Figure 6 shows different paths as a function

of λ, and Table I (top) provides statistics for total path length,

number of reallocated robots, average path edge length, and

the finishing time (proportional to the longest edge length).

To compare the difference between the sparse and dense

graphs, we also ran the experiments on the dense graph

constructed from Figure 5, where each vertex is connected

to all other vertices; the statistics appear in Table I (bottom).

Both graph types are similar except when λ ∈ [0, 0.4], since

the dense graph adds new longer edges directly connect

distant agent-task pairs and, thus, shorter alternative paths

can be found. The similarities between the sparse and dense

graph solutions reflect the fact that edges connecting nearest

neighbors, despite producing a sparse graph, permit most

paths to be captured, a useful result for applications since

edges may also represent sensing or communication links.

(a) λ = .1—.4 (b) λ = .7

(c) λ = .8—.9 (d) Multiple insertions

Fig. 6: (a)—(c) Examples of routing results under different λ values.
(d) The routing paths of two inserted agent-task pairs.

We are also interested simultaneously inserting multiple

agent-task pairs, as illustrated in Figure 6(d). Following

Corollary 3.3, this can solved by running multiple Hungarian

stages on the new tree with exposed roots at the inserted

agents. (The condition in Theorem 4.1 must be made slightly

stronger to guarantee the existence of a matching.)

TABLE I: GRAPH PATHS PROPERTIES

λ
Total Reallocation Average Finishing

Length Number Length Time

0–.4 4.8 2 2.4 2.5

.5–.6 5.3 3 1.77 2.5

.7 6.3 4 1.58 1.8

.8–.9 7.2 5 1.44 1.5

1 8.3 6 1.38 1.5

0–.3 4.3 1 4.3 4.3

.4 4.8 2 2.4 2.5

.5–.6 5.3 3 1.77 2.5

.7 6.3 4 1.58 1.8

.8–.9 7.2 5 1.44 1.5

1 8.3 6 1.38 1.5



















Sparse

Graphs



























Dense

Graphs

Optimality of the assignment is guaranteed even when

multiple robots/tasks are added: although scaling the diago-

nal adjusts multiple utility values, doing so does not affect

the existing feasibility which means that no additional stages

are needed to “repair” the graph. This constrasts with the

dynamic Hungarian method [6], which must adjust values by

first removing and then reinserting them.

VI. EXPERIMENTS AND RESULTS

Two complementary forms of evaluation were con-

ducted: (1) a simulation study systematically evaluating

the effect of λ and degree on large graphs (n = 300);

(2) demonstration on physical robots (n = 6) ensuring no

unreasonable assumptions or simplifications have been made.

Influence of degree: Figures 7(a)–(d) are examples illustrat-

ing paths in graphs of different degrees of 50, 30, 10, and 5,

respectively, with fixed λ = 0.7. The newly inserted agent-

task pair is located in the bottom left corner (robot) and

upper right corner (task). The paths have few changes for

graphs with degrees above 10, but a large change happens

Fig. 8: Properties of resultant routes as a function of tuning parameter λ.

when the degree is 5. Experiments across a range of graphs

yielded following observation: regardless of size, graphs with

degree of above ∼ 10 produce very similar paths, but this is

not the case with degree less than ∼ 7. This characteristic is

important in practical applications where the graph represents

communication with few neighboring robots (see further

discussion in Section VII).

Influence of λ: Figures 7(e)–(h) show paths “straighten”

and grow shorter as λ decreases from 1 to 0.1. Keeping

degree k = 10, statistics from ten experiments for each

λ were collected. Figure 8 plots: (1) the number of robots

reallocated; (2) the route finishing time; and (3) the average

distance each robot moves. As λ increases, the number of

reallocated robots increase, whereas both the finishing time

and average moving distance decrease, and the trend flattens

out. Rates of change are biggest when λ < 0.5.

Generality: We also tested cases when multiple agent-task

pairs are introduced. Figures 7(i)–(k) show two agent-task

pairs inserted at the same time: a robot at each lower corner

and a task at each upper one. Figures 7(i) and 7(j) show two

separate paths when a one single pair is inserted, and 7(k) is

the case when the two pairs are added simultaneously. The

new paths in Figure 7(k) have higher quality because the

routing solutions generated from the Hungarian algorithm

represent a (global) optimal matching. Figure 7(l) shows that

the algorithm also works in higher dimensions.

A. Comparison with a Standard Shortest Path Algorithm

As λ decreases the total path length of the routing path

is reduced; how short will the path be when λ = 0? We

compared the shortest paths computed from our morphing

algorithm with Dijkstra’s well-known single source shortest

path (SSSP) method. In most cases, paths computed by

the two methods are identical; when not exactly identical,

the paths’ lengths have a relative difference in length of

a few percent (
len(morph)−len(dijkstra)

len(dijkstra) < 2%). Figure 9

compares two such paths. Although the solutions are not

always identical, paths with minimum λ do approximate

Dijkstra’s shortest path for practical purposes. The advantage

of the proposed method over other SSSP algorithms lies

in its low computational complexity for sparse graphs, the

incremental paradigm, and its tunable path outputs.

B. Physical Robot Experiment

We also verified our algorithm with a physical robot im-

plementation. To construct the sparse bigraph, the algorithm

(a) (b) (c) (d) (i) (j)

(e) (f) (g) (h) (k) (l)

Fig. 7: (a)–(d) Paths produced in topologies of varying degree; (e)–(h) Paths of varying λ; (i)–(k) Multiple optimal paths; (l) Path in a 3D scenario.

does not need each robot’s position, but requires instead

the nearest neighbors’ distances for each robot. If, however,

the robots’ positions are known, bigraph construction is

straightforward. In our scenario, robots localize themselves

and then we assign them target locations. New robot and task

pairs are added thereafter.

We used six iRobot create robots (see Figure 10) equipped

with ASUS EEE netbooks and Hokuyo URG-04LX-UG01

laser sensors. Each robot is provided with a scale map of

our building and uses a particle filter [13] available as part

of the player package [14] to localize itself. The netbooks

process all the sensor input, calculate the utility estimates,

provide wireless communication, log the data, etc. Utilities

are computed by negating the path length between a robot

and the desired designation, which is computed as the sum

of all the path segments between the waypoints generated by

the planner. Each robot follows this series of waypoints to

reach the assigned task location (see Figure 10(a)).

The robots communicate with each other using UDP:

each robot listens for messages sent by teammates. When

a new robot-task pair is inserted, the new robot first queries

the bigraph from the deployed robots, connecting itself and

adding the associated task to the 3D bigraph. Since the

deployed system already has all robot-task pairs matched, the

new robot runs one stage of the algorithm to compute the new

matching. When multiple robots are introduced, one robot is

randomly selected from the set of new robots to be responsi-

ble for constructing the new bigraph. Finally, this robot runs

the requisite stages (#stages = min{#robots,#tasks}),

to obtain a new allocation solution, which it then broadcasts

to every member as a routing commitment.

(a) (b)

Fig. 9: (a) Shortest path from Dijkstra’s algorithm; (b) Path produced by the
proposed incremental matching method when λ = 0.

We placed task locations uniformly in the left and right

corridors as shown in Figure 10. The robots are started at

random initial locations and, after localizing themselves, they

move to the designated (initially assigned) task locations.

Once all robots have reached their respective destinations, a

new robot-task pair is inserted as shown in Figure 10(a). The

new robot “morphs” to its task location via a routing path:

either left or right traversal in this case. We manipulated

the degree of vertices in the graph and the parameter λ.

Note that the graph is purposely unbalanced so that the left

path always has more vertices. Figure 11 shows the results

of a run on the dense graph that connects all robot-robot

pairs. The horizontal axis is the degree of unbalancedness

in robots on left and right paths, e.g., l2-r1 means there

are 2 robots in the left path and 1 robot in the right path.

The result indicates that, generally, the paths switch from

one to the other for a value of λ between 0.3 ∼ 0.4. This

is consistent with the conclusion from simulation that path

switching happens more often as λ → 0. Additionally, we

tested the situation where each robot is connected to only

its nearest neighbor. The result differs only at λ = 0: in a

dense graph the morphing solution directly allocates the new

robot to the new task, whereas in sparse graph it chooses the

path on the right (the shortest routing), as expected. We also

tested the cases of inserting multiple robot-task pairs, and the

results show that for any λ, the robots always morph to the

nearest task locations with shortest routes. Figure 10(b) is

an example showing two robot-task pairs added to a system

already containing 4 robots, and the algorithm produces the

two shortest paths, which is globally optimal.

C. Analysis

In this paper we consider the task of computing an optimal

routing which formulate as an assignment problem. We

believe the following are advantages over other algorithms:

1) Low computational complexity: Each stage requires

O(n2) for dense bigraph [5], but for the sparse bigraph of

edge degree k, the complexity is bounded by O(kn), i.e.,

linear in the system size. When the problem arises from a

network of robots communicating with nearby neighbors,

this latter bound applies.

2) The incremental paradigm: Newly inserted robot-task

pairs become deployed parts of the system after the routing

is completed, and only neighboring information need be up-

dated to be ready for further robot-task insertion. Moreover,

because of the special aligned matching relation, removal of

a vertical matched pair in the 3D bigraph is as simple as

disconnecting incoming and outgoing edges.

3) Tunable paths: The algorithm does not modify any of the

2D network information but achieves different assignment

solutions by scaling a special “virtual” edge for each vertex

via λ, which can be easily computed and visualized.

VII. GENERAL APPLICABILITY OF THE FORMULATION

The approach is applicable more generally than the spe-

cific scenario used above. It is not necessary for the routing

graph edge weights to be Euclidean distances, nor necessarily

for the robots to be localized. The optimization criteria do

not depend on particular locations, rather known or estimated

distances or traversability costs between nearby robots can

suffice. For example, a swarm of wirelessly networked robots

without localization capabilities can use local radio signal

strength for both cost estimation , and actual (gradient-based)

traversal from one node to another. In this case, minimal

distance versus time can be important as one wishes to min-

imize time while also limiting the number of slow, unreliable

searching movements (i.e., bounding total reallocations).

The model can also be extended to topological change of

large multi-agent systems by disconnecting individual agent-

task pairs and reconnecting them with new task assignments,

one may “morph” the topology using the approach. This

can be used in the simulation of flocking formations, or

global shape morphing of particle systems, or the topological

variations for mobile robots moving together but adjusting

for navigation in irregular and confined environments.

Fig. 10: Robots on the left actively
localize and execute tasks in the corri-
dor of our research building; the map
of the building is shown below. The
inset picture shows the physical robot
used in the experiments, in detail.

(a) (b)
(a) One robot-task pair is inserted, the new robot is circled in lower
corridor and the new task location is labelled with triangle in upper
corridor. (b) Two robot-task pairs being inserted.

VIII. CONCLUSION

In this paper solves a problem arising as new robots and

tasks are added to already deployed units: it moves the new

robots into maximally useful positions while adjusting the

deployed robots only as necessary and where doing so can

save costs. The result is a physical routing of robots through

the graph encoding navigation constraints. Our approach

applies a variant of the Hungarian algorithm to compute

optimal assignments incrementally in sparse bipartite graphs.

The graph involved is a two layered bigraph with weighted

links connected in 3D. Multiple solutions are produced by

adjusting the spacing between the two layers, allowing one

to balance optimization criteria to minimize total distance,

the level of disruption caused by redeploying robots and the

time to complete the adjustment.

Fig. 11: A plot of the watershed λ that switches between the left and right
paths. The horizontal axis value l〈α〉-r〈β〉 denotes the left path has 〈α〉
robots (vertices) and the right path contains 〈β〉 robots.

REFERENCES

[1] S. Topal, I. Erkmen, and A. M. Erkmen, “Morphing a Mobile Robot
Network to Dynamic Task Changes over Time and Space,” in Intl.

Conf. on Automation, Robotics and Control Sys., 2009, pp. 192–199.
[2] A. Howard, M. J. Matarić, and G. S. Sukhatme, “An Incremental Self-

Deployment Algorithm for Mobile Sensor Networks,” Autonomous

Robots 13(2), pp. 113–126, 2002.
[3] T. Balch and R. C. Arkin, “Behavior-based formation control for multi-

robot teams,” Trans. on Robotics and Auto. 14(6), pp. 926–939, 1997.
[4] R. Karmani, T. Latvala, and G. Agha, “On scaling multi-agent task

reallocation using market-based approach,” in Intl Conf. on Self-

Adaptive and Self-Organizing Systems, 2007, pp. 173–182.
[5] I. H. Toroslu and G. Üçoluk, “Incremental Assignment Problem,”

Information Sciences, vol. 177, no. 6, pp. 1523–1529, Mar. 2007.
[6] G. A. Mills-Tettey, A. Stentz, and M. B. Dias, “The Dynamic Hun-

garian Algorithm for the Assignment Problem with Changing Costs,”
Carnegie Mellon University, Tech. Rep. CMU-RI-TR-07-27, 2007.

[7] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” in IEEE Intl. Conf

on Robotics and Automation, 2008, pp. 128–133.
[8] W. Ren and N. Sorensen, “Distributed coordination architecture for

multi-robot formation control,” Robotics and Autonomous Systems

56(4), pp. 324–333, 2008.
[9] W.-M. Shen and B. Salemi, “Distributed and dynamic task reallocation

in robot organizations,” in IEEE Intl. Conf. on Robotics and Automa-

tion, 2002, pp. 1019–1024.
[10] G. Elkaim, R. Kelbley, and A. M. Erkmen, “A Lightweight Formation

Control Methodology for a Swarm of Non-Holonomic Vehicles,” in
IEEE Aerospace Conference, Big Sky, MT, 2006.

[11] N. Agmon, G. A. Kaminka, S. Kraus, and M. Traub, “Task Realloca-
tion in Multi-Robot Formations,” J. of Physical Agents 4(2), 2010.

[12] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the SIAM 5(1), pp. 32–38, 1957.

[13] D. Fox, “KLD-sampling: Adaptive particle filters,” in Advances in

Neural Information Processing Systems (NIPS-14), 2001, pp. 713–720.
[14] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:

Tools for multi-robot and distributed sensor systems,” in Proc. Intl.

Conf. on Advanced Robotics, 2003.

