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Abstract— We consider the problem of filtering whilst main-
taining as little information as possible to perform a given
task. The literature includes several illustrations of how adroit
choices for state descriptions may lead to concise —or even
minimal — filters tailored to specific tasks. We introduce an
efficient algorithm which is able to reproduce these hand-
crafted solutions.

Specifically, our algorithm accepts as input an arbitrary com-
binatorial filter, expressed as a transition graph, and outputs an
equivalent filter that uses fewer information states to complete
the same filtering task. We also show that solving this problem
optimally is NP-hard, and that the related decision problem
is NP-complete. These hardness results justify the potentially
sub-optimal output of our algorithm. In the experiments we
describe, our algorithm produces optimal or near-optimal
reduced filters for a variety of problem instances.

These reduced filters are of interest for several reasons,
including their direct application on platforms with severely
limited computational power and in systems that require
communication over low-bandwidth noisy channels. Moreover,
inspection of reduced filters may provide insights into the
structure of a problem that can guide the design of the other
elements of a robot system.

I. INTRODUCTION
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Fig. 1: [left] Two agents move amidst three beam sensors.t[righoptimal
combinatorial filter, first discovered by Tovar, Cohen, andvdle and
reproduced by our algorithm, for tracking whether the agemts in the
same region. The numbers 0, 1, and 2 denote the regions, anettdrs &,
b, and c denote observations from each of the three beams.

X ={0,1,2} x {0,1,2}, and to track thenondeterminis-
tic information state (I-state}-that is, the set of possible
states—based on the beam crossings we observe. This ap-
proach requires us to track which ¥ = 512 distinct I-states
is consistent with the observation history.

However, Tovar, Cohen, and LaValle observed that this
problem can be solved using a filter with only four I-states:
One I-state representing “agents are together” and three I-

A central question facing the designer of any autonomouiates representing “agents are separated by beafor
robot is to determine how the robot should process and stof@ch of the three beams. The right side of Figure 1 is
information from its sensors. The answer to this questiofiraphical depiction of this filter. The vertices represent |
must account for the incompleteness and potential inacgurastates and the directed edges show transitions that occur
of that information, the computational capabilities of thevhen a beam crossing is detected. In this paper we describe
robot, and the specific task that robot must complete. A r@n algorithm that is able to automatically replicate thiscki

cent line of research has considered solutions to this enobl
using combinatorial filters which are carefully crafted to

of filter reduction, which heretofore has required cleverdia
crafting.

retain only the information that is essential to completing More generally, our results are applicable to any filtering
the robot’s task [11], [17], [19]. The goal of this paper is totask that can be described in terms of discrete transitions

investigate algorithms for automatically constructingdimgl
combinatorial filters.

between finitely many information states (which need not
necessarily represent sets of possible states as in thgpkxam

As a simple example, consider the problem depicte@bove), triggered by finitely many events such as observa-
in Figure 1, which was introduced by Tovar, Cohen, and@ions from sensors or actions executed by a robot. A filtering
LaValle [16]. In this problem, two agents move through ariask in this context is determined by a partition or “colgfin
annulus-shaped environment. The environment is subdivid®f the I-states, indicating which I-states that filter must b
by three beam sensors that can detect when an agent cros¥lg to tell apart.
the beam, but cannot determine the identity of the agent norWe present an algorithm that accepts this kind of colored
the direction of the crossing. The goal is to determine, @raph as input, and outputs a reduced graph that is provably
all times, whether the agents are in the same region. Agguivalent to the input graph. The intuition of our approach
obvious approach is to define a nine-element state spaideto identify pairs of same-colored I-states that must iema
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conflicts remain, we merge each pair I-states that have the

same color to form the reduced filter.



We also show that the problem of determining whether & the first to address the question of automatic reduction of
given filter can be reduced to a given size is NP-completeombinatorial filters.
As a result, no polynomial time algorithm exists for this The I-state graphs we consider are a special case of
problem, unles® = NP. This limitation is evident in our the nondeterministic graphs recently studied by Erdmann
algorithm in the graph coloring subroutine which dominate§], [5]. That work is primarily concerned with topological
its run time; our algorithm is efficient only when that graphconditions on the existence of plans to reach certain gaals i
coloring is approximate rather than optimal. We consider sesuch a graph, rather than with reducing the size of the graph
eral quadratic-time approximate coloring algorithms wahic itself.
in our experiments, produce optimal or near-optimal reduce Another thread of research has proposed systematic sim-

filters. plifications of geometric information spaces [13], [15] by
We believe that these kinds of reduced combinatorial filtergpproximating the I-states with simple geometric shapes.
are of interest for several reasons. That work is more general than the present research because

1) First, reduced combinatorial filters, which require veryt does not require the observation and information spazes t
small quantities of memory, can be directly useful orPe finite, but it relies on experimental data as evidence that
platforms that have, because of constraints on spad@e underlying tasks can still be completed, in contrashéo t
weight, or energy, severely limited computation powerProvable equivalence provided in this paper.

2) Second, for systems that require communication be- Roy, Gordon, and Thrun [14] also automate reduction of
tween multiple robots over a low-bandwidth noisyrepresentational detail, but within a probabilistic plavgn
channel, using a reduced filter to maintain the inforsetting using POMDPs. They apply dimensionality reduction
mation to be communicated can optimize the numbédfchniques to reduce computational requirements needed to
of bits that must be transmitted. solve for policies. In contrast, the I-state model allows tm

3) Finally, inspection of reduced filters may reveal in-minimize state without requiring as rich a transition model
sights into the structure of the problem that we ca@nd enables the hardness result produced herein.
exploit. For example, if the algorithm generates a
reduced filter that does not utilize the output of one
or more sensors, we can conclude that those sensordNe consider filters that have access to a stream of discrete
are unnecessary for completing the task, and revise tlodservationsfrom a finite observation spacelenoted Y.

I11. DEFINITIONS AND PROBLEM FORMULATION

system’s hardware design accordingly. Each observatiory € Y corresponds to a discrete unit of

actionsthat a robot executes, as observed by a passive filter
on that robot. For the purposes of reduction in this paper, th
difference between observations and actions is not impbrta
To simplify the language we use the term “observations”

« In Section Ill, we define the filter minimization problem
in a precise, general way.

« In Section IV, we prove that the problem of finding an
optimal reduction of a given filter is NP-hard.

: - . . _exclusively.
« In Section V, we present an efficient algorithm for filter . . .
reduction that often generates optimal or near-optimal Following the_termmo_logy introduced by Lavalle [10],
filters. we use the terninformation state (I-statejo refer to any

« In Section VI, we describe an implementation and'epres(jen]:[atlonthof Lhet mforr]:naté)on av?IIabIgttcr)] the sy;ter;,
a series of quantitative experiments that measure t rive rt(;m be 'St.o fy of o s'er]:./a'tlons 't has drecglk\)/e t.h
performance of our algorithm, ecause the observation space is finite, we can describe the

, ) ) _changes in the I-state using a transition graph.
The paper concludes with a discussion of future work in o ) _
Section VII. Definition 1: Anl-state graphG is a edge-labelled di-

rected graph supplemented with a starting veriex, G =
Il. RELATED WORK (V,E,1: E— Y,u), in which

The kinds of combinatorial filters and reduced I-states we 1) the finite setl” contains vertices which we call “I-
study in this paper have a long history—see, for example,  States’,
the sensorless manipulation work of Erdmann and Mason [6] 2) the setE consists of ordered pairs of vertices termed
and Goldberg [7] which uses transition graphs to represent  directed edges,
the evolution of a robot’s uncertainty— and were formalized 3) each edge is labelled with an observation via the
in a general way by Lavalle [10], [11]. function/, and

A number of recent papers have presented combinatorial4) the starting I-state is identified ag € V.
filters for such tasks as target tracking [19], mobile robofn additional and important requirement dris that ife; =
navigation [12], [17], and manipulation [9]. However, that(v,v;) and es £ (v,vy) With v; # vi, thenl(er) # l(ez).
prior research relies upon careful human analysis of specifThat is, no two edges originating from the same vertex have
problem types and often seeks only to find feasible, rathéne same label. For convenience, we write— v, for an
than optimal, filters. To the best of our knowledge, this papeedge fromw; to v, bearing labely.



Given a sequence of observationgy; - --y,, one may | Problem: Filter Minimization ( Fm)

trace these oG by starting atvy and following the edges Input: A filter F.
. - . L

Iabellgd by eachy;, one after another.. If all of th.e corre Output: A filter F* such thatF (F) F* and the numbet
sponding edges exist, then the resulting I-state is unjquel of I-states inF* is minimal.
determined. However, because we do not require the imagelof
[ to be its entire codomain, it is possible that no edge latielle
with y; € Y exists from the current I-state. This occurs IV. HARDNESS OFFILTER MINIMIZATION
when constraints imposed by the structure of the underlying This section presents a hardness result for the filter mini-

problem indicate that an observation cannot occur at a givefization problentm introduced in Section I11. Following the

|-state. For observation sequences under which this occu(gyal technique, we first convert to a decision problem:
the resulting I-state is undefined.

Because we are primarily interested in the behavior gfPecision Problem: Filter Minimization (Fm-DEC)
I-state graphs for observation sequences whose resukting | Input: A filter F andk € N*.
states are well-defined, we define the language of strings foPutput: Trueif there exists a filterF’ with at mostk
which this is the case. |-states, such thdf £5 F’; False otherwise.

Definition 2: Thelanguage induced by an I-state graph

G, denoted asC(G) C Y, is the set of all sequences of \p_complete problem, which directly implies tirat is NP-
observations €.9., yoy1 - ) for which valid transitions 5.4 \e proceed by arguing thai1-DEC is in complexity
may be traced orx by starting at its initial vertex. class NP (Section IV-A) and by providing a polynomial time

We can now consider the kinds tasks that one may wisteduction from the problem of 3-coloring a graph—a known
to use an |-state graph to perform. NP-complete problem—tem-DEC (Section IV-B). Finally,

Definition 3: An I-state graph supplemented with a colSection IV-C briefly discusses the relationship betwees thi

oring of its vertices is termed élter, e.g, F 2 (V,E problem and the closely related (but efficiently solvable)

I:E— Y,vy, c: V — NT), in which functionc assigns a problem of minimizing deterministic finite automata.
natural number to each I-state.

The primary result of this section is thamM-DEC is an

A. Filter Minimization is in NP
Thellnterprgtatmn 1S thqt observations are made and in- prove thatrm-DEC is in NP, it suffices to show that,
formation retained, and ultimately a color is reported a&s th

filt out. Th loring d ibes the task perf 4 b iven the reduced filtef’, we can verify its correctness in
nter output. "The coloring describes the task performe gkoblynomial time. The first condition o’ —that it has at

filter and, thus, represents the degree of fineness to whi stk vertices—is trivial to confirm. It remains to show how

!nform_anon IS requqed. For example, in a plar_mlng problenove can, given two filterd'; and F,, efficiently determine
in which the goal is to reach some I-state in given class

: o WhetherF; =51 p
of goal I-states, one might form a “goal detection filter” by =1 2 )
choosingc to assign colorl to every goal I-state and color  Algorithm 1 shows a method to perform this test. The

2 to every non-goal I-state. By using more than two colordNtuition is to imagine boti¥; andF working in parallel to
arbitrarily complex filtering tasks can be defined. filter some observation sequence fral(F ). The_: algorithm _
Our goal in this paper is to reduce these kinds of filterdS€S @ forward search to generate and examine each pair of

without impacting their correctness at completing a giveNE"iC€S(v1,v2) € Vi x V> that can be reached during any

task. This requires a precise notion of equivalence betwe HCh smultangous executpn.]ﬁz produces correct colors .
wo filters or every possible observation at every reachable state pai

o . N then the filters must be equivalent.

Def'n't'an 4: Two filtersFy = (V, E,l: E = Y, vo, ¢1), Note that the outer loop of Algorithm 1 (lines 3-16)
and F; = (W,Fm:F — Y,wg,cz) With & cOmmon eyecutes at mostV; || V| iterations, that the inner loop
observation spacé’” are said to beaquiva!ent with respect to (lines 5-15) executes at mokY’| iterations, and that the
alanguageC C Y™ if, for every observation sequente L,  yemaining operations can be completed in constant time.
the I-statesy’ and w' reached by tracing on F1 andF2  Therefore, Algorithm 1 runs i®(|V; || V|| Y|) time. The
respectively are both defined, and we haY(?gl) = c2(w').  existence and polynomial run time of this algorithm lead
We denote this equivalence relation wih = F. directly to the following result.

Assuming we are given an initial filteF as the specifi- Lemma 1: Filter minimization is in complexity class NP.
cation of a filtering task, we are concerned with other filters

that are equivalent on the language inducedhyiz. those B. Filter Minimization is NP-complete

) L(F)

filters F’Ev(vp)ereF —Lg,-) (Note that one needs some care The previous section showed that verifying the correctness
sinceF —= F' 4 F ——= F’.) Comparing the cardinality of a reduced filter can be done efficiently. Next we prove that,

of the vertex sets aF andF’, one obtains a relative measureunlessP = NP, determining whether such a reduced filter
of the memory required by implementations of either filterexists is a computationally intractable problem. We prdcee
It is natural to consider thélter minimization problem by reduction from a standard graph coloring problem:



Algorithm 1 Filter Equivalence Test
Input:
Two filters Fq £ (V],E],ll : B — Y7’l)1701),
andF2 = (VQ,EQ,ZQ By — Y, vy, Cg)

Output:
True if Fy £E) F,, or False otherwise.

1: if ¢1(v1) # co(v2) return False
2: @ + (v1,v9) {Initialize queue with the start verticés.
3: while @ is not emptydo

40 (v1,v2) < Q.pop()

5. for each edgen - w; in E; do

6: if E» has an edges — w, then

7 if ci(w1) # cz(w2) then

8: return False{F2 produces an incorrect coldr.
9: else if (w1, w2) has not been enqueued befohen
10: Q.insert ((w1,w2))

11: end if

12: else

13: return False{F2 terminates wher&; does not;
14: end if

15:  end for

16: end while
17: return True {No discrepancies for any reachable state pair. Fig. 2: [top] An example instance @fRAPH-3c. [bottom] The correspond-
ing instance offM-DEC. The vertices in the left column have color 1, the
middle column has color 2, and the vertices in the right colunue ftalors 3
and 4. Our constructed instances use- 6.

Decision Problem: Graph 3-Coloring GRAPH-3C)

Input: An undirected graplG. o . . . . .
Output: Trueif there exists coloring ofG using at most in time linear in the size ofG;. Therefore, it remains for
l..us to show thatG; is 3-colorable if and only if there

3 colors, such that no pair of adjacent vertices ", - f :
P ) exists a reduced filtelFs with at most 6 vertices, such

shares the same coldfalse otherwise. L(Fa) ) S )
that F, F3. Let us consider each direction of this

This problem is known to be NP-complete [2]. Thereforeproposition in turn.
it suffices for us to show a polynomial time reduction from
GRAPH-3C to FM-DEC.

Given an undirected grap@, = (V,, E;) as an instance
of GRAPH-3C, we construct an instance @fv-DEC with
filter Fo = (Va, Es, 1,vg, ¢) and size bound: as follows:

1) Create a start vertex inV, called vy. Define Proof: We must show that ifz; is 3-colorable, ther¥,

Lemma 2: For any instanc€; of GRAPH-3C for which
the correct output is “True,” then the correct output of the
filter minimization problem instancEy described above is
also “True.”

c:vp 1. can be reduced to an equivalent filter of at most 6 vertices.
2) Create additional vertices ifr,, one for each vertex Letc; : V; — N* denote a 3-coloring 0G;. To construct
in V;. For each such vertex, assignc : v — 2. filter F5 with the required properties, start frofy, as de-

3) For each vertex; € V;, create a new observation scribed above, and perform vertex identification operation
y; and a new edgeq Y win E,, by ensuring that on all pairs of verticesv, and v, for which (i) both are
(vo,v) is in Es and ! : (vg,v) = v;. generated in step 2 above, a@il ¢;(v,) = ¢;(vp). Note

4) Create two additional vertices iff, namedvy and that the resulting graph has at most 6 vertices:vg, vg,
ve. Let ¢ i vp — 3 andc : ve — 4. The intuition of and at most three vertices associated with the three distinc
these vertex names is to suggest the colors “red” ar@plors in ¢;. Figure 3 illustrates this construction for the
“green.” example introduced in Figure 2.

5) For each edgév;,v;) in E;, create a new observa- To show thafF's is a legitimate filter, we must confirm that
tion y;; in Y and two new edges; Y9, »p and none of its new vertices have more than one outgoing edge
v; RN (vi,vg) and (v;,ve) are in Bz, and for any observation. Suppose such a vegtexists, with two
L: (vi,vR) = yij andl: (vj,vG) > Yij- distinct outgoing edges for observatigy,. Then this vertex

6) Setk = 6. must also have incoming edges fram for observationgy,

The intuition of this construction is to “embed” the origina andys,. The resulting situation is depicted below.

graph G, into filter F5 in such a way that vertices ifr,
are forced to remain separate in any reduced filter equivalen o _ o _—
1A vertex identification operation modifies a graph by replgainultiple

to Fy. Flgur§ 2 shows an example of this (_:onStrUCtlon' vertices into single new vertex, redirecting the incomind antgoing edges
The algorithm to perform this construction clearly runsf the original vertices to the new vertex.



Finally we can assemble these partial results.
Lemma 4:FMm-DEC is NP-hard.

Proof: Combine Lemmas 2 and 3. O
Theorem 5:FM-DEC is NP-complete.
Proof: Combine Lemmas 1 and 4. O

Theorem 6:FM is NP-hard.
Proof: This is a direct consequence of Lemma 4. O

C. Relationship to DFA minimization

Fig. 3: Afilter equivalent to the filter shown in Figure 2. Basa the original Notice thatFM_l_DE,C .h.aS some surf.ape_—le\{e! similarity to
graph is 3-colorable, the filter can be reduced to one witly sixl vertices.  the problem of minimizing a deterministic finite automaton
(DFA):

Decision Problem: DFA Minimization (DFA-DEC)

Input: A DFA M.
Output: Trueif there exists a DFAM’ with at mostk

. states, such that(M) = £(M’); False other-
Note that because observatiapsandy;, both lead tov, we wise.

know thatc; (v,) = ¢; (vp). However, the existence of edges
labeled with observation,; implies that an edge exists in  In both cases, the input is a graph that describes transition
E; betweenv, andv,. Sincev, andwv, are connected by an that occur in response to a finite alphabet of input symbols,
edge but have the same color, we have a contradiction to taed the goal is to determine whether the input graph can
supposition that; is a proper 3-coloring of5;. Therefore be reduced to a given size. HoweveFRA-DEC is efficiently
F3 is a legitimate filter. solvable using a straightforward partition refinement algo
Finally, it is straightforward to see th@g is equivalent rithm [8].
to F, by examining each of the finitely many observation This apparent discrepancy is explained by the fact that,
strings inL(F3). O in contrast toDFA-DEC, we do not require the reduced
filter to produce identical results for every observatiaimgt
in Y*, but only on those observation strings &(F). In
practice, this means that the reduced filter may generate
colors for observations strings that are not in the language
Proof: Use proof by contrapositive. Suppose there existqduced by the original graph, which allows I-states to be
a six-vertex filterFs £ (V3, Es, m, vg, d) that is equivalent “merged” even when their outgoing edges differ. Perhaps
to F2. We must show that there exists a 3-coloring@f.  somewhat surprisingly, the need to perform these merges in

First, note that the start vertex &5 must have color 1 3 globally optimal way leads to the hardness result expdesse
(i.e., d(v() = 1), sinceF, generates color 1 on an emptyin Theorem 6.

observation string. Note also th#ts must also have one

vertex of color 3 and one vertex of color 4 that are reached by V. APPROXIMATE FILTER MINIMIZATION

observation sequences of length 2. Therefore the othee thre In the previous section, we showed that, under widely-

vertices are reached by observation sequences of lengthatcepted complexity assumptions, the optimal filter mini-

Denote these three vertices, vo, anduvs. mization problem cannot be solved by any polynomial-time
For each vertex, in V;, note that an edge, - v;, algorithm. In this section, we present an efficient techeiqu

must exist inF3 since the filter is equivalent tB'». Let ¢;  for approximate filter minimizatianThat is, we describe an

denote the vertex-labeling d&; constructed by assigning algorithm whose input is a filtdf'; , and whose output is an-

¢1(v;) = i. Sincewi, vz, andvg are the only candidates for gther filterF, for which Fy =L F, and|V,| < | Vs|. In

v;, this labeling uses only three colors. contrast to the optimal filter minimization problem disces

We still must argue that this labeling is a proper coloringn Section 1V, we do not requir€, to be the smallest filter
of Gi. Suppose not, and letv,,v,) € E; denote an ijth this property.

edge for whiche; (v,) = ¢4 (vp). By construction,F3 has _ o

edgesvy 2% v,,(n,) @nd vy 2 v, (). Therefore, the A Algorithm Description

observation sequencegy., and y,y., generate the same The intuition of the algorithm is to imagine “merging”
color in F3. However, the construction df, dictates that each group of same-colored vertices iy into a single
these two observation sequences generate different colorertex in F. If, for each color that appears R4, all of
namely a 3 and a 4. This contradiction implies that théhe outgoing edges for each observation go to vertices of the
labeling ¢; is indeed a 3-coloring ofz;, completing the same color, then this operation forms a well-defined filter—
proof. O there is no ambiguity about the correct destinatiod infor

Lemma 3: For any instanc€; of GRAPH-3C for which
the correct output is “False,” then the correct output foreth
FM-DEC instanceF5 described above is also “False.”




Algorithm 2 Approximate Filter Minimization B. Correctness and Runtime

Input: R The next two lemmas confirm that Algorithm 2 terminates
Afilter Fy = (V, B,l: E = Y, v, ¢1). and returns a correct answer.
Output:

Lemma 7: Algorithm 2 terminates after at most’ |2
iterations of its loop.

Proof: Let n(F) £ Y"1V} SV [e(v;) = ¢(v;)], in which
4-] denotes the indicator function whose value is 1 when its
argument is true and O when its argument is false. That
is, n(F) denotes the number of same-colored vertex pairs
in F. Observe thatn(F;) decreases by at least 1 with
each iteration of the loop in Algorithm 2. Moreover, if
n(F) = 0, then every vertex irfF has a distinct color, so

by definition there are no conflicts. Therefore, the algonith

L(F1)

A filter F5, such thatF, Fs.

- while F; has a conflicted colok do

Compute the conflict graph for coldrin F;.

3:  Color the conflict graph using an efficient approximat
graph coloring algorithm.

4: Refine the coloring ofF;, replacing & with this
coloring.

5. end while

6: Form F5 by performing vertex identifications on any

pair of same-colored vertices ;.

N =

. . X 9
7: Color each vertex oF; using the (unique) original color must terminate on iteratiofi’|*, if not before. =

of its constituent vertices. Lemma 8: Algorithm 2 correctly produces a filter equiv-
8: return Fo alent toF;.

Proof: Note that each edge iR, corresponds to an edge
in F5 with the same source color, destination color, and

h edge it | it lor th observation label. As a result, every observation sequence
each edge ity In contrast, if any color that appearsm n L(F1) generates the same color in boky and Fs,
has two outgoing edges labeled with the same observation but L(F1)

with different destination colors, then it is not clear wic Which implies thatF; === F,. Therefore, Algorithm 2
edges should be included in the new filter. Our algorithnt® COrrect. . _ 0
works by iteratively refining the coloring dfy until all of To bound the run time of the algorithm, I¢tn) denote

these conflicts are eliminated, after which it merges all " Upper bound on the time used to color a conflict graph
the same-colored vertices to forRy. of size n, which depends on the graph coloring technique

we select. To compute the conflict graph requir&s time

to check for each conflict, angV/|?| Y| to build the entire

graph. To apply the conflict graph’s coloring back Hois
Definition 5: In a filter F & (V,E,l : E — Y,v,c), a trivial |V| time operation. Finally, forming and coloring

two verticesv € V, w € V arein conflictif c(v) = c(w) F2 is also straightforwardV'|| Y| time computation. Hence,

and there exists an observatignand edgesy -+ v’ and  Algorithm 2 runs in timeO(| V|*| Y|/ (] V|)). However, note

w -5 w' such thatc(v') # c(w'). A color k is called that this a pessimistic bound: In practice, the algorithm

conflicted if at least one pair of vertices assigned to thatgenerally uses far fewer thai | iterations of its outer loop.

color are in conflict.

More formally, we use the notion afonflict between the
two vertices:

C. Conflict Graph Coloring

Definition 6: In a filter, theconflict graph for colork is

an undirected graph with vertex st € V | ¢(v) = k} and
edge sef{(v,w) € F | v conflicts withw}.

So far we have not specified any technique to use for
coloring the conflict graphs in Algorithm 2. First, note tladit
known algorithms for performing this coloring optimally—
The key observation is that, for any conflicted colgiif we  that is, using the fewest colors possible—take time exponen-
find a coloring of its conflict graph (using new, unique colorgial in the number of vertices [2]. Therefore, Algorithm 2
that are not in the image af) and modify the originak to  can only be efficient if the subroutine we use to color the
use those new colors in replacementkofthen none of the conflict graphs is only approximate.
new colors that replacg will be in conflict with any other A large family of approximate graph coloring algorithms
vertices. have been proposed [1], [18], any of which would be suitable

Our algorithm, for which pseudocode appears as Algd®r our approach. Our implementation usesjuential greedy
rithm 2, uses a series of these conflict graph coloringsPloring [3] because of its simplicity, ease of implementa-
to refine the coloring off; until it has no conflicts. We tion, and solution quality. The intuition of this approacsh i
intentionally leave the algorithm for coloring the conflict!® Select some order for the vertices and to assign colors to
graph as an unspecified “black box.” Section V-C discussest3em in that order, using the first available color for eadie T
few options for how one might instantiate this black box, anduality of the solutions generated by this approach depends
the experiments in Section VI evaluate their performanc&rongly on how the vertices are ordered. We considered
When there are no remaining conflicts, the final filter i$€veral options:
formed by merging each subset of I-states that share thee A natural ordering in which we make no special
same color. attempt to order the vertices, and allow them to retain



whatever arbitrary ordering is determined by the detail§ *f uneduced - 3
of the implementation. & ;;: - 1if££;i;%;; ;
« Ordering by degregin which the vertices are orderedg o E 1_;%;@%?’32;: - 10 3
by their degree in the conflict graph, starting with theZ o f random & = 1000 —— E

highest degree vertex.

ices in

« Random orderingin which we use a pseudo-random: 10 - L e
number generator to shuffle the vertices, so that aff 5f /'4§E>‘_=;=,=.=:—— SRR S S
permutations are equally likely. 00— 5 0 15 2

« lterated random orderingin which we repeat the color- ) ) Beam Sensors ) ]
ing several imes using diferent random permutationd,S, - 0% el o sucriatealy edced e gl e
and retain only the best result. the error bars show the standard deviation after 10 trials.

For comparison purposes, we also implemented an optimal (0 A
coloring algorithm that works by exhaustively enumerating e

{2,3}

{3,4}
{2}
{4}
{3}
{1}

partitions of the vertices.

VI. EXPERIMENTAL RESULTS

We have implemented Algorithms 1 and 2 in C++. This
section presents results showing its effectiveness orraeve
example problems. All of the executions described in this
section were performed on a GNU/Linux computer, using a e
single core of a quad-core 2.5GHz processor. We terminated
each run as a failure after 10 minutes of CPU time.

We considered two generalizations of problem shown in
Figure 1, in which we varied both the number of agents and
the number of beam sensors subdividing the annulus. First,
we formed a family of problems in which one agent moves
in the annulus amidst varying numbers of beam sensors and
the goal is to recognize when the agent is in a given target
region (“region 0”). This problem is noteworthy because the
optimal filter has a constant size of five vertices, regasdles
of the number of regions.

We constructed input filters based on nondeterministic I-
states for all instances with between 1 and 20 regions, and

executed Algorithm 2 to reduce those filters. For conflickig. 5: [top] A 5-vertex filter for the 5-sector 1-agent dorpoblem,

. . . jenerated by Algorithm 2, using optimal colorings for the fiongraphs.
graph coloring, we used an exponential-time optimal al(~:]quottom] An equivalent filter using seven vertices for the sgmeblem,

rithm, along with sequential greedy coloring using (i) the i generated using the best of 10 colorings of each conflictigraach based
plementation’s natural ordering, (ii) ordering by degrapg on sequential coloring with a random ordering of the vestice
(iif) random ordering with the number of random colorings
k of each conflict graph set tb = 1, 10, 100, and 1000.  sensors varies between 1 and 20, and the filter’s goal is to
For the randomized algorithms, we performed 10 trials ankhow when the agents are in the same region, without regard
computed the mean and standard deviation of the reductat which of region they share. Figure 6 shows results of this
filter size. Figure 4 shows the results of this experimenexperiment, which used the same conditions as described
Notice that, except for the g natural ordering, all of the above.
approximate coloring algorithms achieved results at or nea Third, we considered the L-shaped corridor problem intro-
the globally optimal solution with 5 vertices. All of theseduced in Section 11.3.1 of LaValle’s book [10]. This scenari
runs completed within the allotted time. features a single robot moving in an L-shaped grid using
Figure 5 shows two of the reduced filters for the annuluactions up, down, left, and right. Each of these actions move
problem. Note that the equivalence of these to one anothire robot in the requested direction by either one or twosstep
illustrates the utility of Algorithm 1 as it is challenging but stops prematurely should the robot reach the envirohmen
to assess their equivalence visually. We speculate that thioundary before completing its motion. The robot has no
difficulty stems from the fact that the language over whiclsensors. This problem is noteworthy because, whereas the
they are equivalent is a subset Bf, which is only implicit number of I-states in the unreduced filter increases exponen
here. Notice how the structure of the five region, single aigetially as a function of the length of the corridor, the size
annulus implies that, for example, no observation sequencéthe reduced filters increases only linearly. Figure 7 show
contains the subsequenced” the results of this experiment. In this case, our algorithas w
Second, we considered a variation of the problem frorable to generate the optimal reduced filter in every run for
Figure 1 in which there are two agents, the number of beawhich it finished within the allotted time.

{0,1,2,3,4}
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The current paper has considered only filter reduction. An
interesting unanswered question is to determine the condi-
tions under which the diagram “commutes.” Is it better to
reduce and then plan, to plan and then reduce, or are these

Fig. 6: Solution quality for automatically reduced filters f@ two agents
moving in an annulus amongst beam sensors. For randomizedtlahger
the error bars show the standard deviation after 10 trials.

o
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Fig. 7: Solution quality for automatically reduced L-cowidfilters. For
randomized algorithms, the error bars show the variance afletrials. (5]
Note the logarithmic scale on the vertical axis. The optimalveus not
visible because it coincides with the experimental data.

VII. CONCLUSIONS 6]

In this paper, we proved that optimal minimization of com-
binatorial filters is NP-hard. We also presented an efficient;
algorithm to perform these minimizations that often praekic
optimal or near optimal reduced filters. There remain al8l
number of interesting unanswered questions.

A. Sub-optimality bounds o]

For some problems, such as the families of filters referred
to in Figures 4 and 7, we can determine the size of the obl-
timal reduced filter by manual inspection. We observed, fqfij)
all such problems, that executing Algorithm 2 with optimal
conflict graph coloring did indeed produce a globally opiimauZ]
filter. An interesting conjecture is to determine whether
Algorithm 2 always produces optimal reduced filters when
the conflict graphs are colored optimally. More generall;,[,13
we may be able to place bounds on the quality of solutions
produced by Algorithm 2 in terms of the approximation ratid14]
of the underlying conflict graph coloring algorithm.

B. Relationship to planning [15]

In this paper, we focused exclusively on the passive
problem of filtering the information available to the robot,16l
without regard for the related planning problems. Indeed,
if we consider information feedback plans : V. — U
which map I-states to actions, then we can naturally exterié’]
the filters described here intplan graphsin which each
vertex (that is, each I-state) is labelled with the actioat th
should be executed at that I-state. This gives rise to a numbgés]
of questions on plan reduction and its relationship to filter
reduction. [19]

The diagram below depicts one way to visualize the
operations that might be performed on filters (top row) and
plan graphs (bottom row):

two options ultimately equivalent to each other?
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