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Abstract
This paper proposes a new loss function for lin-
ear autoencoders (LAEs) and analytically iden-
tifies the structure of the associated loss surface.
Optimizing the conventional Mean Square Error
(MSE) loss results in a decoder matrix that spans
the principal subspace of the sample covariance of
the data, but, owing to an invariance that cancels
out in the global map, it will fail to identify the
exact eigenvectors. We show here that our pro-
posed loss function eliminates this issue, so the
decoder converges to the exact ordered unnormal-
ized eigenvectors of the sample covariance matrix.
We characterize the full structure of the new loss
landscape by establishing an analytical expression
for the set of all critical points, showing that it is a
subset of critical points of MSE, and that all local
minima are still global. Specifically, the invariant
global minima under MSE are shown to become
saddle points under the new loss. Additionally,
the computational complexity of the loss and its
gradients are the same as MSE and, thus, the new
loss is not only of theoretical importance but is of
practical value, e.g., for low-rank approximation.

1. Introduction
Promising performance in deep learning has spurred active
research to establish a formal understanding of the method’s
empirical results. Two important and complimentary lines
of research have been brought to bear to analyze the be-
havior of various architectures of linear/non-linear neural
networks: (i) global function approximation theorems de-
scribe structural aspects of networks (Leshno et al., 1993;
Lu et al., 2017); while the dynamics of learning (under SGD)
have been examined via (ii) approaches for analyzing prop-
erties of the loss landscape. Within the latter, a direction
centered on the question of local vs. global minima, or more
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generally the categorization of extreme points, has flour-
ished. Much work extends the results of Baldi & Hornik
(1989) for LAEs to more complex networks (Kunin et al.,
2019; Pretorius et al., 2018; Frye et al., 2019). Most notably,
Zhou & Liang (2018) generalize the LAE results to deep
linear networks and shallow RELU networks, and Laurent &
Brecht (2018) prove global optimality for arbitrary convex
differentiable loss under slightly different conditions.

Related Works Though the aforementioned works have
been very successful in addressing the problem of local vs.
global minima, not all global minima “are created equal”.
While for an LAE with MSE loss all local minima are global
minima, Baldi & Hornik (1989) further show that at these
minima the decoder’s columns and the principal components
of the covariance matrix of the data are not the necessarily
the same but only span the same subspace. In other words,
the LAE fails (almost surely) to identify the exact principal
directions. This is due to the loss possessing a symmetry
under the action of a group of invertible matrices, so that
directions (and orderings/permutations thereto) will not be
discriminated. (For a further elaboration and a more detailed
algebraic characterization of the invariance, see Remark 1.
Fig 1 also provides a visual demonstration.)

Several methods for neural networks compute the exact
eigenvectors (Rubner & Tavan, 1989; Xu, 1993; Kung &
Diamantaras, 1990; Oja et al., 1992), but they depend on
either particular network structures or special optimization
methods. More recent related works, mainly concerned
with regularization, form two separate line of studies: one
explores the effects of implicit regularization and the other
investigates the consequence of adding a weight regularizer.

For implicit regularization, Gidel et al. (2019) extended the
results of Saxe et al. (2019), and show that under some as-
sumptions discrete Gradient Descent (GD) dynamics solves
“a reduced-rank regression with a gradually increasing rank”.
In this approach, with vanishing initialization and time
rescaling of the gradient dynamics, the GD optimizer learns
the eigenvectors sequentially. However, not only this ap-
proach only works for GD optimization, it is approximate
as the exact solution is achieved only when the initialization
converges to zero.

In the case of weight regularization, it was observed by
Plaut (2018), and further explored by Kunin et al. (2019)



Eliminating the Invariance on the Loss Landscape of Linear Autoencoders

that adding a weight regulizer to the MSE loss causes the
left singular vectors of the decoder to become the exact
eigenvectors of the sample covariance matrix. Recovering
them, however, still requires an extra decomposition step.
As Plaut (2018) points out, no existing method recovers the
eigenvectors from an LAE in an optimization-independent
way on a standard linear network — the present paper fills
that lacuna.

Our Contributions This work proposes a loss function
and shows for the first time that under this loss the decoder
converges to the exact ordered unnormalized eigenvectors
of the sample covariance matrix. The idea is simple: for
identifying p principal directions we build up a total loss
function as a sum of p squared error losses, where the ith

loss function identifies only the first i principal directions.
This approach breaks the symmetry since minimizing the
first loss results in the first principal direction, forcing the
second loss to find the first and the second. This constraint
is propagated through the rest of the losses, resulting in all
p principal components being identified. For the new loss,
we prove that all local minima are global minima.

Remarkably, the proposed loss function has both theoretical
and practical implications. From a theoretical point of view,
it provides a better understanding of the loss surface. Specif-
ically, any critical point of our loss L is a critical point of the
original MSE loss but not vice versa. We thus conclude that
L eliminates those undesirable global minima of the original
loss (i.e., exactly those which suffer from the invariance).

As for practical consequences, we show that the loss and
its gradients can be compactly vectorized so that their com-
putational complexity is no different from the MSE loss.
Therefore, the loss L can be used (without needing any
additional post hoc processing) to perform low rank approx-
imation on large datasets via any method of optimization,
where SGD is but one instance. In other words, the loss L
enables low rank decomposition as a single optimization
layer, akin to an instance of a fully differentiable building
block in a larger NN pipeline (Amos & Kolter, 2017).

Another promising area where low rank approximation is of
particular interest is in analysis and control of dynamical sys-
tems (Markovsky, 2014). Recently, research has shown how
to conduct spectral analysis of such problems from an op-
erator point of view by applying deep autoencoders (Lusch
et al., 2018). Recovering the exact eigenfunctions of the
dynamic operator is important in these contexts, which we
address.

Organization of the Paper In the next section we define
the loss and review the overall results. In Section 3, we
provide compact expressions for the gradients, present the
analytical structure of the critical points, and use them to
analyze the loss landscape. Along the way we compare

these results with that of MSE loss to further delineate the
advantages of the new loss. We provide proof sketches and
intuitions, postponing detailed proofs to the supplementary
document. Further, to add concreteness and aid visualiza-
tion, Section 4 presents some experimental results.

2. Main Results
Notation In this paper, the underlying field is always R,
and positive semidefinite matrices are symmetric by defini-
tion. We shall denote the transpose of matrix M by M ′.
The Frobenius inner product and norm are denoted as 〈·, ·〉F ,
and ‖·‖F , respectively. Ii;p is a p × p matrix with all ele-
ments zero except the first i diagonal elements being one.
(Or, equivalently, the matrix obtained by setting the last p−i
diagonal elements of a p× p identity matrix to zero.)

The Linear Autoencoder (LAE) The LAE we consider
here is a neural network consisting of n-dimensional input
and output with a single hidden layer of width p < n. The
network is linear in the sense that all activations are identity
functions. The constraints on dimension and requiring only
a single hidden layer are mainly for simplicity and can be
relaxed without major impact on the results. Remark 9
further elaborates on configurations with multiple hidden
linear layers, and dimensions that differ.

The Loss Let X ∈ Rn×m and Y ∈ Rn×m be the input
and output matrices, where m centered sample points, each
n-dimensional, are stacked column-wise. Let xj ∈ Rn and
yj ∈ Rn be the jth sample input and output (i.e. the jth

column of X and Y , respectively). Define the loss function
L(A,B) as

L(A,B) :=

p∑
i=1

m∑
j=1

‖yj −AIi;pBxj‖22

=

p∑
i=1

‖Y −AIi;pBX‖2F , (1)

where, the matrices A ∈ Rn×p, and B ∈ Rp×n are the
weights of the decoder and encoder of an LAE, respectively.

The results are based on the following standard assumptions
that hold generically:

Assumption 1. For an input X and output Y , let Σxx :=
XX ′, Σxy := XY ′, Σyx := Σ′xy and Σyy := Y Y ′ be
their corresponding covariance matrices. We assume:

• The input and output data are centered (zero mean).
• Σxx, Σxy, Σyx and Σyy are positive definite (of full

rank and invertible).
• The sample covariance matrix Σ := ΣyxΣ−1xxΣxy

is of full rank with n distinct eigenvalues denoted as
λ1 > λ2 > · · · > λn.

• The decoder matrix A has no zero columns.
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Remark 1 (The Invariance Problem). Using the notation just
introduced, the invariance problem is easily observed. Let
L̃(A,B) be the MSE loss, defined as

L̃(A,B) := ‖Y −ABX‖2F . (2)

Under Assumption 1, the classical result of Baldi & Hornik
(1989) is that a global minima for the MSE loss, denoted as
(A∗,B∗), is given by

A∗ = U1:p, and B∗ = U ′1:pΣyxΣ−1xx ,

where the ith column of U1:p is a unit eigenvector of Σ
that corresponds to the ith largest eigenvalue. However,
for any invertible C ∈ Rn×n, the point (A∗C,C−1B∗)
is another global minima since the MSE loss is invari-
ant under the group action of GLn(R): the general linear
group of degree n (i.e. L̃(A∗,B∗) = L̃(A∗C,C−1B∗)).
Therefore, any optimization method will converge to some
(A∗C,C−1B∗) with the C being dependant on initializa-
tion, ordering of data, and other factors particular to the
specific method. There is no way to recover the exact eigen-
vectors expressed in A∗ a posteriori. As presented in the
following theorem, the loss L defined in Eq. 1 eliminates
this problem by reducing the space of those invariant ma-
trices from GLn(R) to a subspace of GLn(R) consisting of
only the diagonal matrices.

Theorem 1. Let A∗ ∈ Rn×p and B∗ ∈ Rp×n. Under the
conditions provided in Assumption 1, (A∗,B∗) define a
local minima of the proposed loss function iff they are of the
form

A∗ = U1:pDp, (3)

B∗ = D−1p U ′1:pΣyxΣ−1xx , (4)

where the ith column of U1:p is a unit eigenvector of
Σ := ΣyxΣ−1xxΣxy corresponding the ith largest eigenvalue
and Dp is a diagonal matrix with nonzero diagonal ele-
ments. In other words, A∗ contains ordered unnormalized
eigenvectors of Σ corresponding to the p largest eigenval-
ues. Moreover, all the local minima are global minima with
the value of the loss function at those global minima being

L(A∗,B∗) = p Tr(Σyy)−
p∑

i=1

(p− i+ 1)λi, (5)

where λi is the ith largest eigenvalue of Σ.

Remark 2. While L(·, ·) in the given form contains O(p)
matrix products, we will show that it can be evaluated with
constant (fewer than 7) matrix products independent of the
value p, and more importantly, component-wise scaling of
gradients of MSE loss yields the gradients of L. Finally,
the requirements given by Assumption 1 can be relaxed in
several ways. We elaborate on these relaxations in the next
section after necessary notation and definitions are given.
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Figure 1: Visualization in low-dimensional case of the eigen-
vectors yielded by two loss functions when the training pro-
cess of LAE converges. Top row: using L. Bottom row:
using MSE loss. The newly proposed L yields the exact
desired eigenvectors while the MSE loss fails to do so. The
data are drawn from a zero mean multivariate Gaussian
distribution with diagonal covariance matrix. The shaded
ellipsoid represents the covariance.

Before we get to the theoretical analysis, we also provide
an illustrative example in three dimensions, that is set to be
reduced to two; i.e. n = 3, p = 2, and m = 1000. The
samples are drawn from a multivariate Gaussian distribution
with zero mean and a diagonal covariance matrix with reduc-
ing diagonal elements. As shown in Figure 1, the proposed
loss yields the desired eigenvectors (that are x and y axes)
while the MSE loss fails to do so and only projects onto the
eigenspace spanned by the principal eigenvectors (that is
the xy plane.)

3. Theoretical Analysis
The following constant matrices are used extensively
throughout. The matrices Tp ∈ Rp×p and Sp ∈ Rp×p

are defined as

Tp = diag (p, p− 1, · · · , 1) , (6)

(Sp)ij =p−max(i, j)+1, e.g. S3=

3 2 1
2 2 1
1 1 1

. (7)

Another matrix that will appear in the formulation is
Ŝp := T−1p SpT

−1
p . Clearly, the diagonal matrix Tp is posi-

tive definite. As shown in the supplementary document, Sp
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and Ŝp are positive definite as well.

Detailed proofs of claims appear in the supplementary doc-
ument. Here, we provide proof sketches and remark on the
implications of the claims. The general strategy to prove
Theorem 1 is as follows. First the analytical gradients of
the loss are derived in a matrix form in Propositions 1 and 2.
We compare the gradients with that of the original Mean
Squared Error (MSE) loss. Then we analyze the loss surface
by solving the gradient equations which gives the general
structure of critical points based on the rank of the decoder
matrix A. Thereafter, we describe several interesting prop-
erties of the critical points analytically. Notably, any critical
point of the loss is also a critical point for the MSE loss but
not the other way around. Finally, by performing second
order analysis on the loss in Theorem 1 the exact equations
for the local minima are derived which are shown to be
global minima as claimed.

Remember the definition of the Loss L(A,B) and MSE
loss L̃(A,B) from Eqs. 1, and 2, respectively. The first step
is to calculate the gradients with respect to A and B and set
them to zero to derive the implicit expressions for the critical
points. To do so, first, as shown in the the supplementary
document for a fixed A, we derive the directional (Gateaux)
derivative of the loss with respect to B along an arbitrary
direction W ∈ Rp×n, denoted as dBL(A,B)W , i.e.

dBL(A,B)W = lim
‖W ‖F→0

L(A,B + W )− L(A,B)

‖W ‖F
.

As shown in the proof of the lemma, dBL(A,B)W is
derived by writing the norm in the loss as an inner product,
opening it up using linearity of inner product, disposing
second order terms in W (i.e. O(‖W ‖2)) and rearranging
the result as the inner product between the gradient with
respect to B, and the direction W , which yields

dBL(A,B)W=−2〈TpA
′Σyx−(Sp◦(A′A))BΣxx,W 〉F ,

(8)

where, ◦ is the (element-wise) Hadamard product. Second,
the same process is followed to derive dAL(A,B)V ; the
derivative of L with respect to A in an arbitrary direction
V ∈ Rn×p, for a fixed B, which is then set to zero to derive
the implicit expressions for the critical points. The results
are formally stated in the two following propositions.

Proposition 1. For any fixed matrix A ∈ Rn×p the function
L(A,B) is convex in the coefficients of B and attains its
minimum for any B satisfying the equation

(Sp ◦ (A′A))BΣxx = TpA
′Σyx, (9)

where Tp and Sp are constant matrices defined by Eqs 6
and 7. Further, if A has no zero column, then L(A,B) is
strictly convex in B and has a unique minimum when the

critical B is

B = B̂(A) = (Sp ◦ (A′A))−1TpA
′ΣyxΣ−1xx , (10)

and in the autoencoder case it becomes

B = B̂(A) = (Sp ◦ (A′A))−1TpA
′. (10′)

Remark 3. Note that as long as A has no zero column,
Sp ◦ (A′A) is nonsingular (the reasoning appears below).
In practice, A with zero columns can always be avoided by
nudging the zero columns of A during the gradient decent
process.

Proposition 2. For any fixed matrix B ∈ Rp×n the function
L(A,B) is a convex function in A. Moreover, for a fixed
B, the matrix A that satisfies

A (Sp ◦ (BΣxxB
′)) =ΣyxB

′Tp (11)

is a critical point of L(A,B).

The pair (A,B) is a critical point of L if they make
dBL(A,B)W and dAL(A,B)V zero for any pair of di-
rections (V ,W ). Therefore, the implicit equations for criti-
cal points are given below, next to the ones derived by Baldi
& Hornik (1989) for L̃(A,B).

• For L̃(A,B):

{
A′ABΣxx = A′Σyx,

ABΣxxB
′ = ΣyxB

′.

• For L(A,B):

{
(Sp ◦ (A′A))BΣxx = TpA

′Σyx,

A (Sp ◦ (BΣxxB
′)) = ΣyxB

′Tp.

Remark 4. Notice similar structure with the only difference
being the presence of the Hadamard product by Sp on the
left and by diagonal Tp on the right. Therefore, practically,
the added computational cost of evaluating the gradients is
negligible compared to that of MSE loss.

The next step is to determine the structure of (A,B) that
satisfies the above equations, and find the subset of those
solutions that account for local minima. For the MSE loss,
the first expression (A′ABΣxx = A′Σyx) is used to solve
for B and is substituted into the second expression to derive
an expression solely of A. To solve the first expression
for B, two cases are considered separately: the case where
A is of full rank p, so A′A is invertible, and the case of
A being of rank r < p. Here we do the same but for us
there is only one case. As long as the (not necessarily full
rank) matrix A has no zero column, Sp ◦ (A′A) is positive
definite and hence, is invertible. We give only a brief dis-
cussion here, with a detailed explanation in the first lemma
of the supplementary document. As shown in the lemma,
Sp is positive definite and by the Shur product theorem
for any A (of any rank), Sp ◦ (A′A) is positive semidef-
inite. However, as a result of the Oppenheim inequality
(see Horn & Johnson, 2012, Thm 7.8.16), which in our case
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becomes det(Sp)
∏

i(A
′A)ii ≤ det(Sp ◦ (A′A)), as long

as A has no zero column,
∏

i(A
′A)ii > 0 and therefore

det(Sp ◦ (A′A)) > 0. Here, we assume A of any rank
r ≤ p has no zero column (since this can be easily avoided
in practice) and consider Sp ◦(A′A) to be always invertible.
Therefore, (A,B) define a critical point of losses L̃ and L
if the following equations for critical points hold:

• For L̃(A,B) and full rank A:{
B = B̂(A) = (A′A)−1A′ΣyxΣ−1xx ,

ABΣxxB
′ = ΣyxB

′.

• For L(A,B) and no zero column A:{
B = B̂(A) = (Sp ◦ (A′A))−1TpA

′ΣyxΣ−1xx ,

A (Sp ◦ (BΣxxB
′)) = ΣyxB

′Tp.

Before we state the main theorem we need the following
definitions and notation. First, a rectangular permutation
matrix Πr ∈ Rr×p is a matrix where each column consists
of at most one nonzero element with the value 1. If the
rank of Πr is r with r < p then clearly, Πr has p − r
zero columns. Also when those zero columns are discarded
the resulting r × r submatrix of Πr is a standard square
permutation matrix.

Second, under the conditions provided in Assumption 1, the
matrix Σ := ΣyxΣ−1xxΣxy has an eigenvalue decomposi-
tion Σ = UΛU ′, where the ith column of U , denoted as
ui, is an eigenvector of Σ corresponding to the ith largest
eigenvalue of Σ, namely λi. Also Λ = diag(λ1, · · · , λn)
is the diagonal vector of ordered eigenvalues of Σ, with
λ1 > λ2 > · · · > λn > 0. We use the following notation
to organize a subset of the eigenvectors of Σ into a rect-
angular matrix. For any r ≤ p, let Ir = {i1, · · · , ir}(1 ≤
i1 < · · · < ir < n) be any ordered r-index set. Define
UIr ∈ Rn×p as UIr = [ui1 , · · · ,uir ]. That is the columns
of UIr are the ordered orthonormal eigenvectors of Σ associ-
ated with eigenvalues λi1 < · · · < λir . Clearly when r = p,
we have UIr = [ui1 , · · · ,uip ] corresponding to a p-index
set Ip = {i1, · · · , ip}(1 ≤ i1 < · · · < ip < n). Similarly,
we define ΛIr ∈ Rp×p as ΛIr = diag(λi1 , · · · , λir ).

Theorem 2. Let A ∈ Rn×p and B ∈ Rp×n be such that
A is of rank r ≤ p. Under the conditions of Assumption 1,
the matrices A and B define a critical point of L(A,B) if
and only if for any given r-index set Ir, and a nonsingular
diagonal matrix D ∈ Rr×r, A and B are of the form

A = UIrCD, (12)

B = D−1ΠCU ′IrΣyxΣ−1xx , (13)

where, C ∈ Rr×p is of full rank r with nonzero and normal-
ized columns such that ΠC := (Sp ◦ (C ′C))

−1
TpC

′ is a
rectangular permutation matrix of rank r and CΠC = Ir.

For all 1 ≤ r ≤ p, such C always exists. In particular, if
matrix A is of full rank p, i.e. r = p, the two given condi-
tions on ΠC are satisfied iff the invertible matrix C is any
squared p× p permutation matrix Π. In this case (A,B)
define a critical point of L(A,B) iff they are of the form

A = UIpΠD, (14)

B = D−1Π′U ′IpΣyxΣ−1xx . (15)

Remark 5. The above theorem provides explicit equations
for the critical points of the loss surface in terms of the
rank of the decoder matrix A and the eigenvectors of Σ.
This explicit structure allows us to further analyze the loss
surface and its local/global minima.

Here, we provide a proof sketch for the above theorem to
clarify the claims. Recall the EVD of Σ := ΣyxΣ−1xxΣxy

is Σ = UΛU ′. For both L̃ and L, B on the RHS of critical
point equations is replaced by the corresponding B̂(A). For
the L, as shown in the proof, the simplification yields

U ′A
(
Sp ◦

(
B̂ΣxxB̂

′
))

A′U = Λ∆, (16)

where ∆ := U ′ATp(Sp ◦ (A′A))−1TpA
′U is symmet-

ric and positive semidefinite. The LHS of eq. (16) is
symmetric so the RHS is symmetric too, hence Λ∆ =
(Λ∆)′ = ∆′Λ′ = ∆Λ. Therefore ∆ commutes with
the diagonal matrix of eigenvalues Λ. Since the eigen-
values are assumed to be distinct, ∆ has to be diago-
nal as well. The matrix Tp(Sp ◦ (A′A))−1Tp is posi-
tive definite and U is an orthogonal matrix. Therefore,
r = rank(A) = rank(∆) = rank(U ′∆U), which implies
that the diagonal matrix ∆, has r nonzero and positive diag-
onal entries. There exists an r-index set Ir corresponding to
the nonzero diagonal elements of ∆. Forming a diagonal
matrix ∆Ir ∈ Rr×r by filling its diagonal entries (in order)
by the nonzero diagonal elements of ∆, we have

U∆U ′ = UIr∆IrU
′
Ir

Def of ∆
====⇒

ATp(Sp ◦ (A′A))−1TpA
′ = UIr∆IrU

′
Ir , (17)

which indicates that the matrix A has the same column space
as UIr . Hence there exists a full rank matrix C̄ ∈ Rr×p

such that A = UIrC̄. Since A has no zero column, C̄ has
no zero column. Further, by normalizing the columns of C̄
we can write A = UIrCD, where D ∈ Rp×p is a diagonal
matrix that contains the norms of columns of C̄.

Baldi & Hornik (1989) did something similar for full rank
A for the loss L̃ to derive (AL̃ = UIpC̃). But their C̃
can be any invertible p× p matrix. In our case, the matrix
C ∈ Rr×p corresponding to rank r ≤ p matrix A, has to
satisfy eq. (17) by replacing A by UIrCD and eq. (16)
by replacing B̂(A) by B̂(UIrCD). For the original loss
L̃, equations similar to eq. (17) and eq. (16) appear but
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they are are satisfied trivially by any invertible matrix C̃.
However, in our case, simplifying those equations by using
A = UIrCD results (after some algebraic manipulation)
in the following two conditions for C:

∆Ir = CTp (Sp ◦ (C ′C))
−1

TpC
′, and (18)

ΛIr∆Ir = C
(
Sp ◦

(
(Sp ◦ (C ′C))−1TpC

′ΛIrCTp

(Sp ◦ (C ′C))−1
))

C ′. (19)

As detailed in proof of Theorem 2, solving for C leads to
the specific structure given in the theorem statement.
Remark 6. When A is of rank r < p, and
with no zero columns, the invariant matrix C is
not necessarily a rectangular permutation matrix but
ΠC := (Sp ◦ (C ′C))

−1
TpC

′ is a rectangular permutation
matrix with CΠC = Ir. It is only when r = p that the
invariant matrix C becomes a permutation matrix. Never-
theless, as we show in the following corollary, the global
map is always ∀r ≤ p : G = AB = UIrU

′
IrΣyxΣ−1xx . It is

possible to find further structure (in terms of block matrices)
for the invariant matrix C when r < p. However this is not
necessary, as we will shortly show that all rank-deficient
matrix As are saddle points for the loss and ideally should
be passed by during the gradient decent process. Based on
some numerical results our conjecture is that when r < p
the matrix C can only start with a r × k rectangular permu-
tation matrix of rank r with r ≤ k ≤ p and the remaining
p− k columns of C may be arbitrary but nonzero.

Corollary 1. Let (A,B) be a critical point of L(A,B)
under the conditions provided in Assumption 1 and
rankA = r ≤ p. Then the following hold:

1. The matrix BΣxxB
′ is a p × p diagonal matrix of

rank r.
2. For all 1 ≤ r ≤ p, for any critical pair (A,B), the

global map G := AB becomes

G = UIrU
′
IrΣyxΣ−1xx . (20)

For the autoencoder case (Y = X) the global map is
simply G = UIrU

′
Ir .

3. (A,B) is also the critical point of the classical loss
L̃(A,B) =

∑p
i=1 ‖Y −ABX‖2F .

Remark 7. The above corollary implies that L(A,B) not
only does not add any extra critical points compared to
the original loss L̃(A,B), it provides the same global map
G := AB. It only limits the structure of the invariance
matrix C as described in Theorem 2 so that the decoder
matrix A can recover the exact eigenvectors of Σ.

Lemma 1. The loss function L(A,B) can be written as

L(A,B) = pTr(Σyy)− 2 Tr (ATpBΣxy)

+ Tr (B′ (Sp ◦ (A′A))BΣxx) . (21)

Remark 8. The above identity shows that the number of
matrix operations required for computing the loss L(A,B)
is constant and thereby independent of the value of p.
Remark 9 (Relaxing the assumptions). The proposed loss
is still applicable for LAEs with multiple hidden layers
because, owing to linearity, any multilayer LAE may be
reduced via matrix multiplication to a network with one
hidden layer (that layer being no wider than the narrowest
of the original hidden layers). The only modification being
that the analytical form of the gradients should be evalu-
ated for each layer separately via the procedure underlying
Propositions 1 and 2.

The second and third conditions in Assumption 1 can be
relaxed by requiring only Σxx to be full rank. The output
data may have a different dimension than the input. That is
Y ∈ Rn×m and X ∈ Rn′×m, where n 6= n′. The reason
is that the given loss function is very similar to MSE loss
structurally and can be represented as a Frobenius norm on
the space of n × m matrices. In this case the covariance
matrix Σ := ΣyxΣ−1xxΣxy is still n× n. Clearly, for under-
constrained systems, with n < n′, the full rank assumption
of Σ is still feasible. For the over-determined case, where
n′ > n, the second and third conditions in Assumption 1
can be relaxed: we only require Σxx to be full rank since
this is the only matrix that is inverted in the theorems. Note
that if p > min(n′, n) then ΛIp : the p× p diagonal matrix
of eigenvalues of Σ for a p-index-set Ip inevitably has some
zeros. If it has rank r, then r < p, which in turn results in
the decoder A having rank r. However, Theorem 2 holds
for decoders of any rank r ≤ p. Finally then, following
Theorem 1, the first r columns of the decoder A converge
to ordered eigenvectors of Σ while the p − r remaining
columns span the kernel space of Σ.

Finally, Σ need not have distinct eigenvectors. In such cases
∆Ir becomes a block diagonal matrix, where the blocks
correspond to identical eigenvalues and the corresponding
eigenvectors in A∗ are not unique but they span the respec-
tive eigenspace.

4. Experiments
Comparison of the Two Losses We will verify the loss
function L(A,B) defined in eq. (1) by setting the input
matrix X ∈ Rn×m equal to the output matrix Y ∈ Rn×m

(Y = X), where the linear autodecoder (LAE) becomes a
solution to PCA. In order for comparison, we train another
LAE using the MSE loss L̃(Ã, B̃) defined as

L̃(Ã, B̃) =
∥∥∥Y − ÃB̃X

∥∥∥2
F
,

where Y = X is also applied.

The weights of networks are initialized to random numbers
with a small enough standard deviation (10−7 in our case).
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We choose to use the Adam optimizer with a scheduled
learning rate (starting from 10−3 and ending with 10−6),
which empirically benefits the optimization process. The
two training processes are stopped at the same iteration at
which one of the models firstly finds all of the principal
directions. As a side note, we feed all data samples to the
network at one time with batch size equal to m, although
mini-batch implementations are apparently amendable.

Evaluation Metrics: We use the classical PCA approach
to get the ground truth principal direction matrix A∗ ∈
Rn×p, by conducting Eigen Value Decomposition (EVD)
to XX ′ ∈ Rn×n or Singular Value Decomposition (SVD)
to X ∈ Rn×m. As a reminder, A ∈ Rn×p stands for
the decoder weight matrix of an trained LAE given a loss
function L. To measure the distance between A∗ and A,
we propose an absolute cosine similarity (ACS) matrix
inspired by mutual coherence (Donoho et al., 2005), which
is defined as:

ACSij =
|〈A∗i ,Aj〉|
‖A∗i ‖ · ‖Aj‖

, (22)

where A∗i ∈ Rn×1 denotes the ith ground truth principal
direction, and Aj ∈ Rn×1 denotes the jth column of the
decoder A, i, j = 1, 2, . . . , p. The elements of ACS ∈
Rp×p in eq. (22) take values between [0,1], measuring pair-
wise similarity across two sets of vectors. The absolute
value absorbs the sign ambiguity of principal directions.

The performances of LAEs are evaluated by defining the
following metrics:

RatioTP =

p∑
i=1

I[ACSii > 1− ε]/p (23)

RatioFP =

p∑
i,j=1
i 6=j

I[ACSij > 1− ε]/p, and (24)

RatioTotal = RatioTP + RatioFP , (25)

where I is the indicator function and ε is a manual tolerance
threshold (ε = 0.01 in our case). If two vectors have ab-
solute cosine similarity over 1− ε, they are deemed equal.
Considering some columns of decoder may be correct prin-
cipal directions but not in the right order, we introduce
RatioTP and RatioFP in eqs. (23) and (24) to check the
ratio of correct in-place and out-of-place principal direc-
tions respectively. Then RatioTotal in eq. (25) measures
the total ratio of the correctly obtained principal directions
by the LAE regardless of the order.

Datasets: Although our experiments are only intended for
our theories’ proof-of-concept, we include both synthetic
data and real data experiments. For the synthetic data,
2000 zero-centered data samples are generated from a 1000-
dimension zero mean multivariate normal distribution with
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Figure 2: (a) Convergence of losses to their corresponding
optimal loss. Note that the correct shift and scaling of the
y-axis tick values is printed at the top left corner of the
figure. (b) Performance of both losses L and L̃ in finding
the principal directions at the columns of their respective
decoders.

the covariance matrix being diag(Np). For the real data, we
choose to use MNIST dataset (LeCun et al., 1998), which
includes 60,000 grayscale handwritten digits images, each
of 28× 28 = 784 pixels.

Synthetic Data Experiments: In our experiment, p, the
number of desired principal components (PCs), is set to
100, i.e. the dimension is to be reduced from 1000 to 100.
Figures 2a and 2b demonstrate a few conclusions. First,
during the training process, the loss ratio of both losses
continuously decreases to 1, i.e. they both converge to the
optimal loss value. However, when both get close enough,
L require more iterations since the optimizer is forced to
find the right directions: it fully converges only after it has
found all the principal directions in the right order.
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Second, using the loss L results in finding more correct
principal directions, with RatioTP continuously rising;
and ultimately affords all correct and ordered principal di-
rections, with RatioTP ending with 100%. Notice that
occasionally and temporarily, some principal direction is
found but not at their correct position, which is indicated
by the small fluctuations of RatioFP in the plot. However,
as optimization continues, they are shifted back to the right
column, which results in RatioFP going back to zero, and
RatioTP reaching one. As for L̃, we see that it fails to
identify any principal direction correctly; both RatioTP

and RatioFP for L̃ stay at 0, which indicates that none
of the columns of the decoder Ã, aligns with any principal
direction.

Third, as shown in the figure, while the optimizer finds
almost all the principal directions rather quickly, it requires
much more iterations to find some final ones. This is because
some eigenvalues in the empirical covariance matrix of
the finite 2000 samples become very close (the difference
becomes less than 1). Therefore, the loss has to get very
close to the optimal loss, making the gradient of the loss
hard to distinguish between the two.

Real Data Experiments On the MNIST dataset, we set
the number of principal components (PCs) as 100, i.e., the
dimension is to be reduced from 784 to 100. We also show
reconstruction with the first 10 columns of the decoder that
results from optimization of the respective losses. The re-
sults are depicted in Fig. 3: comparing (c) and (f), it is clear
that the reconstruction performance of L is consistently
better than L̃.

The reason for this superiority in reconstruction is that op-
timization with L results in decoder weights converging to
the ordered eigenvectors of the sample covariance matrix.
Hence, the most significant 10 columns are simply the first
10 columns of the decoder matrix. For MSE loss, L̃, we
again use the first 10 columns of the decoder. However, in
this case, there is no way to determine which columns are
more significant than others as none of them necessarily
represent the exact eigenvectors, they merely span the prin-
cipal eigenspace collectively. This experiment gives visual
confirmation that L̃ does not identify PCs, while applying
L performs PCA directly.

5. Conclusion
This paper introduces and analyzes a new loss function. We
have proved that all local minima are global minima and that
optimizing the given loss L results in a decoder matrix that
converges to the exact ordered unnormalized eigenvectors of
the sample covariance matrix. Given that the set of critical
points of L was shown to be a subset of the critical points of
the standard MSE loss, much prior work on loss surfaces of

(a) Original (b) Full decoder
with loss L

(c) 10 columns
with loss L

(d) Original (e) Full decoder
with loss L̃

(f) 10 columns
with loss L̃

Figure 3: Experimental comparison of reconstruction perfor-
mance using real data from MNIST images. First column:
original image. Second column: reconstructed image using
all the decoder’s columns. Third column: reconstructed
image using the first 10 columns. Top row: using L. Bottom
row: using L̃. For loss L, the first 10 columns of the de-
coder matrix are the most significant. For MSE loss, L̃, the
columns do not represent principal directions and the matrix
does not have them ordered in any way. The reconstruction
in (c) is far superior to the one in (f).

more complex networks likely extends as well. In light of
the removal of undesirable global minima through L, exam-
ining more complex networks is certainly a very promising
direction. For practitioners, the new loss function is valuable
for low-rank approximation problems, for instance in per-
forming principal component analysis and linear regression
with linear autoencoders. There are several other possible
generalizations of this approach we are currently working
on. Informed by our experimental results on synthetic data,
one promising thread is to improve the performance when
the corresponding eigenvalues of two principal directions
are very close and another is generalization of the loss for
tensor decomposition.
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