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Abstract

Auction and market-based mechanisms are among the most popular methods for distributed task allocation in multi-robot
systems. Most of these mechanisms were designed in an heuristic way and analysis of the quality of the resulting assign-
ment solution is rare. This paper presents a new market-based multi-robot task allocation algorithm that produces optimal
assignments. Rather than adopting a buyer’s “selfish” bidding perspective as in previous auction/market-based approaches,
the proposed method approaches auctioning from a merchant’s point of view, producing a pricing policy that responds to
cliques of customers and their preferences. The algorithm uses price escalation to clear a market of all its items, producing
a state of equilibrium that satisfies both the merchant and customers. This effectively assigns all robots to their tasks. The
proposed method can be used as a general assignment algorithm as it has a time complexity (O(n3lgn)) close to the fastest
state-of-the-art algorithms (O(n3)) but is extremely easy to implement. As in previous research, the economic model re-
flects the distributed nature of markets inherently: in this paper it leads directly to a decentralized method ideally suited for
distributed multi-robot systems.

1 Introduction
Task allocation and assignment methods have become an important paradigm for coordinating teams of robots. Task allo-
cation, as we study here, is a process that involves each robot estimating the utility expected for performing available tasks,
and computing an assignment of tasks to robots in order to maximize the collective benefit. Oftentimes, these matchings are
computed repeatedly to allow the robot team to adapt collectively as circumstances change. In such cases both running-time
and quality of the resulting robot-to-task matching are important determinants of the team’s efficiency.

Most classic optimal assignment algorithms were originally developed by operations researchers and are not well suited to
multi-robot task allocation. One typically desires decentralization to enhance the system’s tolerance of individual failures and
to improve the practical running time. Among the popular optimal assignment algorithms developed by operations researchers,
only one algorithm can be said to be conveniently distributable: Bertsekas’s famous optimal AUCTION algorithm (Bertsekas,
1990). The economic interpretation of decentralized auctioning and bidding procedures has been favored by many roboticists
who, in the last three decades, have developed numerous decentralized assignment approaches by employing auction or
auction-like mechanisms. Although the auctioning idea is favored by roboticists, Bertsekas’s AUCTION algorithm itself is not
widely used in robotics. We believe that this is because it suffers from several important drawbacks, which we analyze and
address in this paper. Instead, roboticists have designed their own auction/market-based strategies in order to adapt to various
multi-robot architectures. Unfortunately most of the existing techniques fail to achieve optimality and few quantify the quality
of the resulting allocation.

Nevertheless, the AUCTION algorithm provides a good framework for designing distributable assignment algorithms. We
present a new algorithm∗ which inherits features and merits of the AUCTION algorithm while overcoming some of the draw-
backs that impede wider adoption in robotics. The new method improves on the AUCTION algorithm in that the redesign
removes the intrinsic data dependence. It reaches the global optimum with a time complexity close to the state-of-the-art
(even for centralized) methods and, like most market-based approaches, coordination involves only sub-teams (communica-
tion among them is assumed).

The new method, instead of auctioning via a series of “selfish” bids from customers, is a mechanism from the perspective
of a merchant. It produces a pricing policy that incentivizes coordination between cliques of agents. This paper shows that it
∗The main algorithm was first presented in the 2013 Robotics: Science and Systems conference (Liu and Shell, 2013).
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is possible to employ a market-based method suited to decentralized implementation for multi-robot systems, and still attain
global optimality, and do so with strongly polynomial running time (and iterations).

2 Related Work
We address the classic task assignment problem where robots and tasks are matched by forming a one-to-one mapping. This
has been termed the single-task robots, single-robot tasks, instantaneous assignment problem (ST-SR-IA) (Gerkey and Matarić,
2004).

2.1 Optimal Assignment Algorithms and Decentralization
Many optimal assignment algorithms have been developed (see reviews (Burkard et al., 2009; Pentico, 2007)). The majority
are primal-dual methods (details of primal and dual formulations are presented in sections that follow). Important examples
include the well-known Hungarian algorithm (Kuhn, 1955), which solves the matching problem by manipulating a match-
ing bipartite graph. Several shortest augmenting path algorithms (e.g., see Derigs (1985)) were inspired by the Hungarian
algorithm and are also primal-dual methods themselves. These algorithms are capable of solving the problem with O(n3)
time complexity when certain searching techniques and/or auxiliary data structures are employed. But one drawback is the
difficulty that arises in producing decentralized variants of these algorithms. This is because the construction of an alternating
tree for seeking (shortest) augmenting paths may require searching and labeling the entire graph. Some recent progress in
solving the assignment in a distributed way has been made (e.g., see work of Giordani et al. (2010)) although information
from all individual agents is still required even when the computation is decentralized. This defect limits the applicability of
these algorithms in distributed settings.

An important instance is the AUCTION algorithm developed by Bertsekas from the late 70s to early 90s (Bertsekas, 1990).
This algorithm’s basic computational primitives (viz., bidding and auctioning) are highly localized rather than relying on
queries of global information; this led to its wide-spread recognition as a naturally distributable assignment algorithm. Yet the
algorithm itself has not been widely adopted for multi-robot problems. There are several possible reasons. The initial version
of the AUCTION algorithm (Bertsekas, 1979) can be naturally decentralized, but it has running time that is not bounded
for arbitrary data. Applicability to the robotic domain is hindered by the large and uncertain time (and communication)
complexity. Later versions employ some techniques (e.g., ε-scaling (Bertsekas, 1990)) to remove the data dependence but
at the cost of undermining the decentralized nature. For instance, ε-scaling requires multiple runs of the whole algorithm,
causing prohibitive communication. The later versions lost the connection with the original auctioning primitives, forfeiting
the economic interpretation. These extensions all increase the implementation complexity significantly. Recently Zavlanos
et al. (2008) extended AUCTION to use local information over a multi-hop network; unsurprisingly it was based on the initial
version.

Another important optimal assignment algorithm is the Dinic-Kronrod algorithm (Dinic and Kronrod, 1969). This algo-
rithm was the first O(n3) optimal assignment algorithm but is independent of the primal-dual theories. However, this fact was
only discovered many years after its invention due to translation problems (it was developed and published in Russian during
the Soviet Era). Dinic-Kronrod’s method operates on cost matrix with an initial infeasible assignment; it starts from an arbi-
trary unassigned column, and strategically manipulates values of other columns (without changing the assignment problem)
until a new assignment configuration is found such that the starting unassigned column is assigned to some row while main-
taining that other assigned columns are still assigned. In such way, the problem is solved once no unassigned column remains.
Although Dinic-Kronrod’s algorithm is not distributable, its source-sink concept and manipulation (see details in Burkard
et al. (2009)) inspired our algorithmic designing process. Despite our method has an inferior time complexity (O(n3lgn)), it
is distributable — amongst other features.

Table 1 details the comparison of important features among the aforementioned task allocation/assignment methods.

2.2 Multi-robot Task Allocation Methods
Most classic optimal assignment algorithms that reach the global optimality are centralized. A centralized assignment al-
gorithm can be efficient in addressing the task allocation of small-scale systems; they can be straightforward to implement
because they exploit the fact that the every robot’s information is globally accessible. The disadvantages become important
for larger scale systems (involving tens, hundreds, even thousands of robots); significant drawbacks include, for example,
(1.) imbalance in computation and communication: the central controller is responsible for information collection and dis-
semination as well as data processing for the whole system. A heavy workload may result in low efficiency for the central
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Table 1: FEATURES COMPARISON
XXXXXXXXXXMethods

Features
Optimal Polynomial Distributable

The proposed Yes Yes Yes

AUCTION Yes Weakly Yes

Market-based No Yes Yes

Hungarian variants Yes Yes No

Dinic-Kronrod’s Yes Yes No

controller, which yields in the low efficiency for the entire system; (2.) poor robustness against failure owing to the dependence
on the single central controller: the failure (e.g., a drained battery) of central controller may paralyse the entire system. Many
existing multi-robot task allocation methods focus on distributing the communication and computation to sub-teams or even at
individuals, and have been successfully demonstrated in a variety of scenarios such as formation control (Agmon et al., 2010),
mapping and exploration (Vincent et al., 2008), path planning and navigation (Turpin et al., 2012), etc. Other representative
approaches for task allocation operate by partitioning the robots and/or tasks into subgroups and may repeat the process re-
cursively which eases decentralization (McLurkin and Yamins, 2005; Smith and Bullo, 2007a), as well as behavior-based or
role-based strategies (Parker, 1998; Vail and Veloso, 2003).

Market-based task allocation is a resource redistribution methodology that borrows the market/economy wisdom of human
beings, and aims at pursuing a maximal benefit for the whole system in a decentralized fashion. Per the definition of Dias et al.
(2006), a market-based task allocation method can be any strategy that applies for market mechanisms in order to allocate
limited resources to certain agents whilst optimizing a team’s common objective. Particular auctioning procedures provide
solutions to important issues (Wolfstetter, 1994): which information (i.e., the outcome of comparative item evaluations) ought
to be revealed? To whom should it be revealed? How should the comparison be done in an impartial way so that the decision
making does not favor a particular individual? How can this be done efficiently so that the process is terminated quickly
in sale? The precise way auction mechanisms addressing these problems has lead auctions to be the most commonly used
mechanisms in the market-based paradigm.

Auction mechanisms can be further categorized into two subsets: single-item auctions and combinatorial auctions. The
single-item auction is the classic auctioning method that allows each bidder to submit one bid, and an honest auctioneer
makes decisions to award the item to the highest bidder. Mathematical models (e.g., Bertsekas (1979) or Wolfstetter (1994))
show that an optimal solution can be obtained in such scenarios. In contrast, the combinatorial action is more complex in
terms of diverse auctioning policies. Also, the determination of winners is NP-complete and inapproximable (Sandholm,
2002). Specifically, combinatorial auctions allows each bidder to submit bids for a set/bundle of items, such that a bid can be
expressed as a synergy of evaluations with regard to differing items (usually evaluations on different items are not additive).
The presented work is built on the single-item auction, making it conceivable that an efficient algorithm may also produce the
optimal solution.

A review of the literature shows that a large set of decentralized multi-robot task allocation methods employ market-based
or auction-based mechanisms; representative examples include: the distributed market-based framework (Dias et al., 2002;
Goldberg et al., 2003; Michael et al., 2008), the auction-based MURDOCH model (Gerkey and Matarić, 2002, 2000), and
cooperative auctions (Koenig et al., 2010; Nanjanath and Gini, 2006). These techniques have been extended to a wide range
of multi-robot scenarios, applied to NP-hard problems like routing, planning, scheduling, or used to address problems where
partial knowledge is assumed or local information employed (Lagoudakis et al., 2005; Nanjanath and Gini, 2006). Note that,
even for the single-item auctions, existing methods for solving multi-robot task allocation problems are typically designed on
the basis of an intuition and may be presented without any rigorous algorithmic analysis. For these reasons, most often the
global optimum will not be obtained (see review in Dias et al. (2006)); oftentimes the resulting allocation quality remains
unknown. Until this paper, the AUCTION algorithm was the only optimal method in this class.

Complex task scenarios may also impose various constraints such as time (Luo et al., 2013) and resources (Zhang and
Parker, 2013). A more common constraint is the communication (Smith and Bullo, 2007b; Zavlanos et al., 2008), where each
robot has a limited communication range and is able to exchange information with only neighbors in the vicinity. Information
accessibility affects assignment solution quality, and sub-optimality can be obtained only if local (incomplete) information is
available. Note, the proposed work assumes the availability of requested information, i.e., communication among agents in
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the involved sub-teams are assumed to be reliable (multi-hop message relay might be required for communication between a
pair of distant agents).

Recently, we proposed an assignment method (Liu and Shell, 2012a) that is also optimal and distributable. It utilizes
a task-swap mechanism, where a certain subset of robots may form a clique in which tasks are redistributed. Upon the
completion of each redistribution, each robot involved obtains a new task. Throughout execution of the algorithm, every robot
(no matter if it is involved in task swaps or not) is still assigned a task, meaning that the algorithm is an anytime assignment
method. The task-swap based algorithm has some philosophical similaries to the presented method: both require only subset
of robots to be involved at each stage, and both algorithms have a time complexity of O(n3lgn). However, the two algorithms
are fundamentally different in terms of both underlying theoretical models (the task-swap method is primal-based whereas
this proposed work is dual-based), and their resulting mechanisms and interpretations (market or auction based methods are
independent of task swap based frameworks). The task swap approach is used for comparison with this proposed algorithm in
Section 7.

3 Preliminaries
An assignment A for a multi-robot system consists of a set of robots R and a set of tasks T . (To simplify presentation of the
analysis, we assume |R| = |T | = n although the algorithms described in this paper handle the cases |R| < |T | too.) Given
utility matrix U = (uij)n×n, where u : R × T → R+ denotes the utility of having robot i perform task j, the objective is to
find an assignment permutation ϕ : {i} → {j} so that the overall utility u(ϕ) =

∑n
i=1 u(i, ϕ(i)) is maximized.

This problem can be formulated equivalently by a pair of linear programs. The first is the primal program, which is a
maximization formulation:

maximize f(x) =

n∑
i=1

n∑
j=1

uijxij ,

subject to
n∑
j=1

xij = 1, i = 1, · · · , n,

n∑
i=1

xij = 1, j = 1, · · · , n,

xij ≥ 0, i, j = 1, · · · , n,

(1)

where an optimal solution eventually is an extreme point of its feasible set (i.e., xij ∈ {0, 1}). The constraints
∑n
j=1 xij = 1

and
∑n
i=1 xij = 1 capture the mutual exclusion property that restricts each robot to be assigned to exactly one task and each

task to be allocated to a unique robot, respectively.
In auctions two roles are employed: each agent expecting a task acts as a bidder and, for any round of bidding, an

auctioneer determines the result. We assume that both roles are truthful. The auctioneer can be any agent (either an honest
bidder or an agent excluded from the current bidding).

An auction process also requires two types of prices: the first is the actual price pj for an item j, which denotes the price
that this item is currently labelled; the other type is the budge price that bidder (agent) i has for item (task) j: it is equal to the
utility uij , and one may also think of it as an affordable price that bidder i thinks item j is worth. By default, the price refers
to the actual price.

Definition 3.1 The profit margin mij is defined as the difference between the budget price uij and the actual price paid pj:

mij = uij − pj . (2)

Definition 3.2 A price escalation operation involves raising prices on individual or groups of items. Raising individual prices
involves adding a δ ∈ R+ (associated with a single item j) to increase only its price to pj + δ. A many-item price raising
operation makes the same price adjustment δ to a set of items S:

pj =

{
pj + δ, if j ∈ S,
pj , otherwise.

(3)
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It is straightforward to prove that raising the prices associated with tasks does not change the assignment problem since all
bidders are affected equally by an escalation operation.

Definition 3.3 The preferred choice j∗ for bidder i is an item with maximal profit margin:

j∗ = argmax
j=1,··· ,n

{mij}. (4)

Given a choice of different items, a rational bidder would like to choose an item with the largest profit margin. Assess-
ing choices considers only an individual’s local row in the utility matrix and can be thought of as reflecting “selfish utility
maximizing behavior.” Unfortunately merely combining preferred choices of different bidders is likely to violate the mutual
exclusion property and produce an infeasible assignment.

Definition 3.4 An agent’s alternate choices are the items with profit margins identical to the preferred choice, i.e.,

{j′} = {j | mij = mij∗}, ∀j 6= j∗. (5)

Definition 3.5 A preferred choice transfer j∗ � j′ is the operation that transfers from a current preferred choice j∗ to an
alternate choice j′, where mij∗ = mij′ for bidder i. From a profit incentive point of view, the buyer’s utility is invariant to
these transfer operations; they can be interpreted merely as a difference in the manner in which we break ties.

4 The AUCTION Algorithm
The AUCTION algorithm, proposed by Bertsekas (1979), is a dual-based algorithm for computing an optimal assignment. It
has an interpretation in which a team of agents are seen as bidding on a set of tasks. The algorithm can be understood by
examining the dual of the primal problem (1), as follows:

minimize g(π,p) =

n∑
i=1

πi +

n∑
j=1

pj ,

subject to πi + pj ≥ uij , i, j = 1, · · · , n.

(6)

If the set of prices, p = {pj}, ∀j, have been determined and are invariant, then the feasibility of constraint πi ≥ uij − pj
and the minimization of g(π,p) imply that πi equals the supremum of the closed set {uij − pj}. This is equivalent to:

πi = max
j=1,··· ,n

{uij − pj} = max
j=1,··· ,n

{mij}. (7)

Along with (7), Program (6) becomes unconstrained:

g(p) =

n∑
i=1

max
j
{uij − pj}+

n∑
j=1

pj , (8)

meaning that price p simultaneously becomes the primal optimal and the dual optimal if and only if

mij∗ = max
j
{uij − pj} ∀i, (9)

where mij∗ denotes the largest profit margin for agent i obtained from its preferred choice j∗.
Each iteration of the AUCTION algorithm consists of two phases: the bidding phase and the assignment phase. To guarantee

termination of the algorithm in finite steps, a mechanism called ε-complementary slackness (ε-CS) is used to perturb the
problem when a potential stall occurs. This happens if the problem deadlocks because the bidding price increment becomes
zero (e.g., as a group of bidders have equal preferences for a set of items).

Definition 4.1 The ε-complementary slackness condition is defined as:

mij∗ ≥ max
j
{uij − pj} − ε. (10)

In other words, an extra amount of ε > 0 is sacrificed from the maximal profit margin in order to beat out other bidders and
win the preferred choice.
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Bidding phase:
If agent i has a preferred choice that conflicts with other agents (assume they form a set P(j) for a common item j), it is then
engaged in a bidding competition and computes the bidding increment (i.e., bidding prices that this agent would like to further
add)

γi = vi − wi + ε, (11)

where vi is the profit margin of preferred choice and wi is the profit margin of a second preferred choice, more formally,

vi = max
j
{mij}, wi = max

j 6=j∗
{mij}. (12)

Assignment phase:
A single winner will be determined as it will be the one with highest bidding increment

i∗ = argmax
i∈P(j)

γi. (13)

The price of item j is raised by maxi∈P(j) γi and published to all bidders i ∈ P(j). Agents that do not win the item, then alter
their preferred choices to select other items. /

These bidding and assignment phases repeat until no conflict between preferred choices remain. Once this occurs, the
result solves the assignment problem.

Note that ε must be selected with care to ensure that optimality will not be violated. An appropriate value is obtained
by ε < 1

n when all uij are integers. However, the number of bidding rounds for one auctioning stage is proportional to
the value of max(i,j) uij

ε , and the algorithm has an overall time complexity of O(n2 max(i,j) uij

ε ) (Bertsekas, 1992). If we
choose ε to be slightly less than 1

n , the complexity becomes O(n3 max(i,j) uij). In other words, the running time is weakly
polynomial since it also depends on the value of input data besides the number of agents n. (Note also uij are integers so
that they cannot be scaled arbitrarily small.) The time complexity is later improved by using a multi-trial method called ε-
scaling. Unfortunately multiple trials undermine the decentralized nature of the approach and, hence, its appropriateness for
distributed robot applications especially when the communication cost is prohibitive. So far as we are aware, the ε-scaling
version has not been used in the robot task assignment literature. Thus, we do not discuss them further in this work; for more
detail see Bertsekas (1990, 1992).

5 The Proposed Algorithm
The pricing mechanism in AUCTION provides a good starting point to develop a market-based optimal assignment algorithm
that is naturally distributable but also has strongly polynomial running time. In the AUCTION algorithm, the optimization steps
can be interpreted from the perspective of bidders, each behaving selfishly to eliminate competitors from their preferred tasks.
In contrast, the proposed algorithm adopts the merchant’s point of view. The merchant seeks to clear the market of items
through strategic selection of prices. In a sense, the algorithm has the merchant steer purchasing behavior of the customers.

5.1 Algorithm Description
To view the proposed algorithm from an economic perspective, suppose that the tasks, j = 1, · · · , n, are items in a market,
only one instance of each item is available, and the agents, i = 1, . . . , n, are customers visiting the market. The utility value
uij still represents the budget of customer i for item j. Assume that each customer is allowed to buy one item in this market
and the merchant wants to clear the market (i.e., sell all the items whilst ensuring each customer obtains an item). Once this is
achieved, the market reaches a form of equilibrium.

Just like standard bidders in an auction, the customers make their own independent choices that reflect their local pref-
erences. A merchant is selected in the same way as selecting an auctioneer. Specifically, for items preferred by multiple
customers, the merchant will raise prices by an amount so that the items are no longer the most profitable choice for some cus-
tomers. This is in contrast to the AUCTION algorithm in which bidders are responsible for raising the prices. As the merchant
instigates escalation, the customers are motivated to consider other items. This way of guiding the customer’s choices reflects
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the broader philosophy of altering the behavior of people via economic incentivization, as is widely used by policy-makers in
the real world (Mankiw, 2011).

Algorithm 5.1 MARKET STAGE (t)

1: set Ť := {t}, Ř := Ř ∪ {i | ϕ(i) = t}
2: sink := 0, ī := 0, j̄ := 0; record vectors ξ := {0}, Ω := {∅}
3: while sink = 0 do
4: δ :=∞
5: for each i in set Ř do
6: l := argmaxj∈T\Ť {uij − pj}
7: v := uiϕ(i) − pϕ(i), w := uil − pl
8: if v − w < δ then
9: δ := v − w

10: ī := i, j̄ := l
11: for each j in set Ť do
12: pj := pj + δ
13: Ωī := Ωī ∪ {j̄}, ξj̄ := ī

14: if {i | ϕ(i) = sink} = ∅ then
15: sink := j̄
16: else
17: Ť := Ť ∪ {j̄}, Ř := Ř ∪ {i | ϕ(i) = j̄}

18: jϕ := 0, jp := sink
19: while jϕ 6= t do
20: jϕ := ϕ(̄i), ϕ(̄i) := jp
21: if jϕ 6= t then
22: ī := ξjϕ
23: jp := jϕ

Algorithm 5.2 MARKET MAIN
1: for j := 1 to n do
2: while |{i | ϕ(i) = j, ∀i}| > 1 do
3: MARKET STAGE(j)

The essence of the proposed algorithm is that the merchant employs a conservative means to stimulate the market so
that, after each stage, one previously ignored item garners sufficient attention to be sold owing to the appropriate adjustments
in price. For an arbitrary item t, if multiple customers select it as their preferred choice, these customers form a clique
Ř = P(t) with a common preference conflict for item t. In the case where there are multiple conflicted items, they form
a set Ť = {t}. A virtual merchant is randomly selected from either Ř or R \ Ř. Customers i ∈ Ř describe their budget
margins vi − wi to the merchant, where vi = maxj∈Ť {mij} is the maximal profit margin for items currently conflicted (in
set Ť ), and wi = maxj∈T\Ť {mij} is the maximal profit margin for items that are not currently conflicted (not in set Ť ). If
the prices of currently conflicted items escalate more than a customer’s budget margin, that customer will lose interest in the
items and switch his preference to others. Having obtained budget margin information, the merchant computes the minimum
price increment δ = mini∈Ř{vi − wi} and increases the prices of all items in Ť .

After this operation, at least one customer must have new alternate choices {j′} from T \ Ť . If any of these alternate
choices are only preferred by single (non-conflicted) customers, they can be immediately sold to them. (We call these available
non-conflicted items “sinks” in the allocation.) Otherwise, set {j′} are now conflicting, Ť ← Ť ∪ {j′}, and the clique grows
Ř ← Ř ∪ {i | ϕ(i) = j′, ∀j′}, where ϕ(�) denotes the assignment mapping as defined before. The merchant will adjust
the prices again and this process repeats until no customer is involved in a conflict. In Algorithm 5.1, the first while loop
(Lines 3—17) is the process of finding the minimum price increment which expands sets Ř and Ť for each iteration. The
second while loop (Lines 19—23) is the assignment process, which tracks back from the sink (newly sold item) to the source
t (original conflicted item) with the help of vectors (Ω and ξ) recording alternate choices, and updates the assignment via
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(a) (b) (c) (d) (e)

Figure 1: Demonstration on a simple assignment example. Prices, shown along the top, are escalated with each iteration. Note
how the initially independent fourth robot only becomes involved when another robot’s purchasing preferences bring them
into conflict in (c).

(a) (b) (c) (d) (e)

Figure 2: Visualization as an equilibrium flow. We wish to manipulate the four striped balls so they flow into four wired
spherical containers that are connected with tunnels among each other. The way to remove balls from a wired container is to
create a perturbation, i.e., add energy to a container to make the enclosed balls unstable (imagine the balls behave like heated
microscopic particles). The essence of the algorithm is that it always adds the minimum energy required to push exactly one
ball out of a crowded container; and it guarantees that a ball will never flow back into an already heated sphere (see Fig. 2(d)).
A stage finishes when one ball flows into a previously empty sphere (see Fig. 2(b) and 2(e)).

8



preferred choice transfers. Algorithm 5.2 calls the individual stages until all customers obtain unique items.
Fig. 1 gives a simple assignment problem as an example that demonstrates the progress of the algorithm. The horizontal

array across the top of each utility matrix (shown in red) represents the prices for the items; the values in the matrices are
profit margins (uij − pj). Shaded cells and dashed cells denote the preferred choices and alternate choices for customers,
respectively. The diamonds to the left of some of the rows denote competing customers, while triangles along the bottom
point to the items that are conflicting. Fig. 2 gives this same example from an equilibrium flow perspective.

5.2 Analysis: Global Optimality and Time Complexity
The proposed algorithm produces globally optimal assignment solutions. Proof of this (in common with the manner of proof
for most primal-dual methods including the AUCTION algorithm) depends on examining the values of dual variables once
the market equilibrium is reached. The customers’ profit margins and items’ prices are the dual variables. In each iteration
customers are only interested in purchasing their preferred choices (which is also the reason for the conflicting items and
hence violation of the mutual exclusion property). Each customer i always maximizes his profit margin

maxmi = max
j
{uij − pj}. (14)

Since the relationship expressed in Eq. (7)—(9) is an if and only if, we can begin with Eq. (9) (as equivalently expressed in
Eq. (14) and determine that

mi + pj ≥ uij , i, j = 1, · · · , n. (15)

which is essentially the constraint of the dual program (6). Thus, the dual program always maintains its feasibility. Moreover,
by plugging Eq. (14) into the objective function of the dual program, the new objective function is unconstrained and in every
iteration is maintained at a local optimum by each customer:

g(p) =

n∑
i=1

max
j
{uij − pj}+

n∑
j=1

pj . (16)

Besides, the algorithm terminates at precisely the moment when each customer obtains a preferred choice and no conflicting
items remain, or, put another way, the moment when the primal program (1) also becomes feasible. Feasibility of both primal
and dual as well as the optimality of the dual yields the global optimal solution for both programs, as stated in the duality
theorems (Bradley et al., 1977). Therefore, when all items are sold out, the global optimal solution must be produced. This
proves the condition of global optimality.

The proposed algorithm has a time complexity of O(n3 lg n). During each stage, the most costly operations are the
computation of budget margin vi−wi for rows i ∈ Ř. The vi are always the maximal profit margins in Ť , while wi are always
the maximal profit margins in T \ Ť . The sets of Ť (and by implication T \ Ť ) change dynamically with each iteration, so
efficiently maintaining the largest values requires a data structure like a priority queue or balanced tree. By employing one
of these data structures, O(lgn) time is needed to extract the maximum value, and there are at most n2 entries, so at most n2

such operations, requiring a worst case O(n2lgn) per stage. A single stage will assign one non-conflicting task and there are
at most n− 1 non-conflicting tasks to be assigned, giving the total time complexity of O(n3 lg n).

5.3 Analysis: An Economic Perspective
To distinguish the essence of our method from the AUCTION algorithm, we provide analysis from the perspective of economic
incentives.

Intuitively, the larger the price escalation, the greater the number of customers who —though showing interest in purchas-
ing those items previously— are likely to be discouraged. To quantify the effects of escalation, the price increment δj for item
j is denoted by†:

min
i∈P(j)

{vi − wi} ≤ δj ≤ max
i∈P(j)

{vi − wi}, (17)

†Note that the word pricing is also used in the linear programming literature, in particular for branch-and-bound and cutting plane methods. Therein the
term is used to describe the dynamic introduction of new variables. That use is distinct and should not be confused with the economic use in the present
paper.
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where P(�) has the same meaning as before. Thus, the price increment must be between the largest profit margin, from the
most willing customer, and the smallest profit margin, from the customer with weakest purchasing incentive but who is still
intending to buy the item.

Definition 5.1 Given a price increment δj for item j, we use parameter Γ ∈ N where 1 ≤ Γ ≤ |P(j)| to quantify this price
adjustment’s incentive.

Γ = |{i | vi − wi ≤ δj ,∀i ∈ P(j)}| , (18)

This measures the effectiveness of the incentive’s ability to alter customers’ preferences, i.e., a larger incentive indicates a
greater alteration of the market’s behavior, and vice versa.

Proposition 5.1 In the AUCTION algorithm, an auctioning operation on an arbitrary item j always has the largest market
incentive: Γ = |P(j)|.

This follows because in the AUCTION algorithm,

δj = max
i∈P(j)

{vi − wi}+ ε, (19)

with ε > 0, showing that the preferred choice of this item is changed for all the involved bidders. However, the bidder with
sacrifice equal to ε becomes the winner (as interpreted in Bertsekas (1990), he takes “risk” for winning this item) and the other
Γ− 1 bidders are forced to alter their preferences.

Proposition 5.2 The proposed algorithm always has the smallest incentive for (individual or group) price escalation.

In the case of individual price escalation for an arbitrary item j, we compute the price increment via δj = mini∈P(j){vi − wi}.
From (18), this is equivalent to

Γ =

∣∣∣∣{i | vi − wi = min
i∈P(j)

{vi − wi}, ∀i ∈ P(j)}
∣∣∣∣ . (20)

In the case of price escalation for a group of items, a common price increment of δŤ = mini∈
⋃

P(j){vi − wi},∀j ∈ Ť is used
on all items in set Ť . Let Ř =

⋃
j∈Ť P(j), then the cumulative incentives from these items are

Γ
′

=
∑
j∈Ť

∣∣∣∣{i | vi − wi = min
i∈Ř
{vi − wi}, ∀i ∈ Ř}

∣∣∣∣ . (21)

The merchant always attempts the smallest price increment that is sufficient to alter a minimum number (but at least one)
customers’ purchasing preferences. This is somewhat analogous to applying a gentle hand on the price policy tiller to influence
economic behavior.

One critical difference between our method and the AUCTION algorithm also lies in the manner of addressing a tie, i.e.,
a group of customers/bidders have equal or similar preferences over the same items. In our method, a tie can always be
resolved with a bounded number of price escalations (each operation eliminates one conflicted item); in contrast, even the
selfish bidding always attempts the largest market incentive, yet price increments may be too small to beat out competitors
quickly (in the extreme case of equal preferences, a price escalation cannot be more than 1/n).

6 Algorithm Decentralization
The new algorithm is suitable for decentralization the same way as the AUCTION algorithm: both computation and commu-
nication become localized to involve sub-teams of robots. We assume that customers (robots) have knowledge of all items
(tasks) and are able to locate all conflicted customers. This can be achieved in different ways depending on the communication
model involved (a typical example is via broadcast over a publisher/subscriber mechanism as used in MURDOCH (Gerkey and
Matarić, 2000, 2002)). If communication has limited range, conflicted customers can locate and communicate with each other
via multi-hop message passing (see Zavlanos et al. (2008)); additional bookkeeping may be required if connectivity is not
maintained or the topology changes during execution of the algorithm.

10



Only those customers with preferences which cause conflicts over the same items need to be involved in resolving the
conflict. In other words, only the robots with preferences failing to satisfy the mutual exclusion property need to communicate.
For agents with non-conflicting preferences, price escalation on other items will never increase their profit margins and, thus,
their current preferred choices remain unaltered. They only become involved when they enter the current stage’s clique, which
occurs when they conflict with the alternate choices of some agent(s) in the clique, (Step 17 in Algorithm 5.1). Otherwise,
they are excluded from current stage’s consideration. The decentralized algorithm involves two roles: a virtual merchant
is randomly selected who is then responsible for operations during the current stage, and customers are formed from the
involved conflicted robots looking to be assigned tasks. Each customer keeps listening to the merchant’s messages, including
price increment information, new items in Ť , and the alternate choice transfer operations.

Algorithm 6.1 Customer[i]

1: initiate Ť := ∅, Ω(i) := ∅
2: . upon receiving price increment δ
3: update profit margins mij , ∀j ∈ Ť
4: if new alternate choice ta ∈ T \ Ť exists then
5: Ω(i) := Ω(i) ∪ {ta}
6: send newly exploited ta to merchant of current stage
7: . upon receiving updated Ť :
8: j

′
:= argmaxj∈T\Ť {uij − pj}

9: vi − wi := (uiϕ(i) − pϕ(i))− (uij′ − pj′ )
10: submit bid vi − wi to merchant
11: . upon receiving assignment ϕ(i)
12: update assignment (the preferred choice and an alternate choice swaps)
13: select a conflicting customer as new merchant, go to next stage

Algorithm 6.2 Merchant

1: initiate: Ť := {ϕ(i)}, send Ť to associated conflicting customers i ∈ Ř
2: . upon recv. newly exploited ta from customer i

3: ξ(ta) := i
4: if ta is still conflicting with preferred customers, say, H then
5: Ť := Ť ∪ {ta}, Ř := Ř ∪H
6: send Ť to customers i ∈ Ř
7: else
8: sink := ta, query Ω(i) from customers i ∈ Ř
9: compute new assignment among Ř with alternate choice records of Ω and ξ

10: broadcast assignment result ϕ(i) to customers i ∈ Ř
11: . upon receiving bids vi − wi from i ∈ Ř

12: minimal price increment δ := mini∈Ř{vi − wi}
13: broadcast δ to customers i ∈ Ř

After receiving this information, computations are performed locally and the results sent to the merchant. The merchant
listens to the information from customers, including the newly discovered alternate choices, choice margin information, and
information for updating the customers involved. After each stage which sells exactly one ignored item, the size of conflicted
customers is reduced. So long as the conflict still exists, a merchant is required and if the current merchant is still involved in
conflicts, it can continue to play the role; otherwise, the role will pass to any of the currently conflicted customers. Conflicts
over disjoint sets of items also allow multiple merchants to exist simultaneously.

High-level pseudo-code for the customers and merchant roles are given in Algorithms 6.1 and 6.2, respectively. Detailed
computations are analogous to the centralized version.
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7 Experiments
Besides the experimental results shown in Bertsekas’ original papers, reported results on the AUCTION algorithm’s per-
formance are surprisingly limited. We implemented the aforementioned algorithms in C++, and ran the experiments on a
Thinkpad laptop with 1.60GHz CPU and 2GB of memory. All results are obtained from data of 50 trials.

(a) (b)

(c) (d)

Figure 3: Practical running times for the AUCTION algorithm (vertical bars denote standard deviations).

7.1 Performance as a Centralized Algorithm
Since the proposed algorithm has a strongly polynomial time complexity and can be used as an optimal assignment algorithm
in a centralized fashion, we compared it with the Hungarian method (the classical benchmark), the AUCTION algorithm, and
our previous task swap-based method (another distributable optimal algorithm (Liu and Shell, 2012a) with time complexity
of O(n3lgn) but not using any market-based notions).

We first tested the AUCTION algorithm in a variety of settings, and the results highlight its extreme sensitivity to the input
data. Fig. 3 shows the running times under different sized matrices and randomized data from different ranges (i.e., [0,Max]).
(Note, randomly generated data is utilized at first because we wish to evaluate the algorithm as a general assignment algorithm
not limited to robotics scenarios.) From Fig. 3(a) to Fig. 3(d) we can see an improvement in running times of the AUCTION
algorithm, indicating that the algorithm works the best when data are scattered with larger differences (as this produces larger
bidding margins). Table 2 is a detailed comparison of the AUCTION algorithm and our method for randomly generated values
in [0, 103], which reveals obvious advantages of the proposed algorithm (both in terms of the mean time and the standard
deviations).

Fig. 4(a) summarizes results of the difference between the proposed algorithm and other aforementioned methods. Com-
pared with the benchmark (centralized) Hungarian algorithm, our algorithm is slightly inferior, but much faster than both the
AUCTION algorithm and the swap-based method. The AUCTION algorithm performs the worst among the four. Note that, the
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Table 2: RUNNING TIME PERFORMANCE: STATISTICS

Matrix size 200 400 600 800

AUCTION

Average 0.4362 5.4619 14.615 32.868
Std. Dev. 0.6745 4.6023 10.055 27.529
Maximum 2.3801 16.401 38.336 105.37
Minimum 0.0517 0.2885 0.4599 12.300

Our algo.

Average 0.0862 0.3956 1.0907 1.9998
Std. Dev. 0.0243 0.0907 0.2184 0.3597
Maximum 0.1730 0.5658 1.7649 2.6351
Minimum 0.0638 0.1981 0.7942 1.3584

(a) (b)

Figure 4: A comparison of running times based on (1) randomly generated data (note: standard deviations for AUCTION
algorithm are large and thus omitted) and, (b) cost matrix obtained from a simulated swarm system (note: the 1st, 2nd and 3rd
quartiles are the bottom, mid-bar and top of the box; whiskers are within 1.5 IQR and outliers are denoted as small “+”).

swap-based method (Liu and Shell, 2012a) has a time complexity of O(n3lgn) which is the same as this proposed algorithm,
however, this presented algorithm seems to perform much better in practice. This may imply that, although this proposed
approach has a worst case of O(n3lgn), the actual amortized time complexity could be Θ(n3). (For both the centralized and
decentralized versions, only a partial matrix need be dynamically computed per round; costly “ranking” data structures are
created only as needed.)

Since data from particular applications may contain certain structures, we also evaluate our method with data from a
simulated multi-robot task allocation scenario, where a swarm of robots are assigned to pursue a set of moving tasks (the
scenario is analogous to the pursuit-evasion simulation presented in Liu and Shell (2012b)). The utility matrix is filled by the
negated costs (travel distances) among all combinations of robot-task pairs. All values in the matrix are also rounded to be
integers. Fig. 4(b) reveals that, comparing with the randomly generated data and for the matrix of the same size, the AUCTION
algorithm needs much longer time to compute solutions on data obtained from the robotic scenario. A possible reason is that
more ties (similar purchase preferences) are produced in the latter case. In constrast, the performance of our method (blue
lines at the bottom) is hardly affected with regards to varying data.

7.2 Performance as a Decentralized Method
We have shown in Section 6 that our method is as naturally distributable as AUCTION. Here we compare the method in detail
with two other distributable optimal algorithms: AUCTION and the task swap-based method.

We compared our algorithm and the AUCTION method by investigating the total number of price escalations. This is
because each price escalation represents one auction operation in the AUCTION algorithm or one market adjustment in our
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(a) (b)

Figure 5: (a) The number of price adjustments in our algorithm compared with bids in the AUCTION algorithm; (b) An example
showing the number of involved robots along the evolution of stages.

(a) (b)

Figure 6: Number of agents/rows involved (averaged). (a) Linear axes; (b) Logarithmic axes.

market-based method. The results, shown in Fig. 5(a), show that the proposed algorithm requires far fewer such steps,
suggesting a great reduction in communication. We also compared the total number of stages (each stage requires an auctioneer
or a merchant) between the two methods. With 100 agents, the results shows that our method needs on average only 40 stages,
whereas the AUCTION algorithm requires almost 2000 stages to complete. This implies that our algorithm has eliminated the
notoriously long iterations inherent in the AUCTION algorithm. Fig. 5(b) is a typical example (matrix size 100×100) showing
the evolution of the stages, along with the number of robots involved in each.

We then investigated the number of rows involved during each stage, which reflects the number of conflicted robots
required for communication in the decentralized variants. Fig. 6 shows results from various matrices with different sizes
ranging up to 800. We see that the number of involved agents generally increases, following a logarithmic function, observable
in Fig. 6(b). When the matrix is large, e.g., at a size of 800, the average number of robots in a stage is about 40. This sub-linear
trend is positive, indicating that the larger the system, the greater the benefit of a decentralized implementation.

We also compared this algorithm with the swap-based method, which approaches the optima by searching for a series of
task exchanges between robots. First we investigated the total number of stages required for completion. Fig. 7(a) shows that
both methods need very similar numbers of stages, and that the swap-based method generally performs slightly better. We
then closely compared the average number of agents involved in each stage (reflecting the amount of communication) using
up to 100 agents. Fig. 7(b) shows that on average the proposed method requires fewer agents to be involved. When the number
of agents is large, the superiority is clear (for a size of 100, this algorithm involves only half number of that of the swap-based
method).
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(a) (b)

Figure 7: (a) Total number of stages required; (b) Average number of involved agents in each stage.

8 Discussions and Future Work
There are several other things worth mentioning:

1. The proposed algorithm works for unbalanced robots and tasks (#tasks > #robots, otherwise utility matrix needs
to be transposed). The algorithm terminates when all conflicted customers have been resolved, and available items are
chosen in a greedy manner and the optimality is always guaranteed. This feature is also important since if a robot
has failed, it can be simply removed from the current market, and the individual failure does not undermine the whole
system.

2. Conflicts can also be resolved concurrently. This means that every conflicted item can initiate a resolution in a decen-
tralized fashion. However, if a robot is subsequently involved in multiple conflicts, later ones have to pause and wait
until the earliest one is resolved and the preferred item’s price has been escalated (this may change the robot’s status in
other conflict involvements though).

3. From a purely algorithmic perspective, the proposed method and the Dinic-Kronrod’s algorithm possess a certain sim-
ilarity: each phase of both algorithms must allocate exactly one unallocated task. But it is important to understand
that the details are quite different: Dinic-Kronrod’s algorithm starts directly from unallocated tasks and reaches what
would be analogous to a “conflicting” row as a sink. The process of our algorithm actually proceeds in the opposite
manner, starting with conflicted agents, and ending up with an unallocated task as the sink. In order to find the alternate
choices, Dinic-Kronrod’s algorithm makes comparisons between current records and the assigned entries, enabling a
time complexity of O(n2) per stage; In our method the tasks outside the exploited set have to be ranked for computing
the bids, which requires O(n2lgn) for each stage. Although it has slightly inferior time complexity, by overcoming the
global communication and computation challenges, this is offset by advantages gained via a decentralized variant (see
Section 5.1 and 6).

In future work, we are also interested in investigating the proposed market-based mechanism further. As we have stated, we
believe that the major contribution of this work lies in the evidence that a market-based mechanism is capable of reaching
the global optimum in a distributed manner with limited number of steps. But resolving assignment ties requires successful
communication, which could potentially be problematic in some robotic scenarios. (The review of literature in Section 2
illustrates how challenging it is to reach the global optima if each robot can obtain only local information.) Therefore, one
direction is embedding this new mechanism in other popular auction/market-based methods (e.g., by modifying or re-designing
their bidding or pricing policies) to improve their solution quality even if optimality need be sacrificed.

9 Conclusions
Like the AUCTION algorithm, which one can regard as a procedure by which bidders with overlapping buying interests resolve
their conflicts, we introduce an algorithm that can be regarded as analogous to the process of selecting pricing polices to alter
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purchasing behavior to clear all inventory. To summarize, the novel algorithm has several attractive features:
i.) Simple primitives and optimality: The technique has an intuitive interpretation which is inherently distributed and leads
naturally to a decentralized implementation. Unlike most other market-based methods, global optimality can be achieved.
ii.) Strongly polynomial time complexity: This is an advantage over the classic optimal and distributable AUCTION algorithm,
as well as existing decentralized market-based algorithms. Sensitivity to input values is also eliminated.
iii.) Distributed computation and communication: Even in computing the global optimum, typically only a small subset of
robots are found to be involved. The decentralized variant of the algorithm require no single privileged global controller.

This new task allocation mechanism has potential to lead to improvements in numerous existing sub-optimal market-based
approaches too.
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Gerkey, B. P. and Matarić, M. J. (2000). Murdoch: Publish/subscribe task allocation for heterogeneous agents. In Fourth
International Conference on Autonomous Agents, pages 203–204.
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