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Abstract

The assignment problem arises in multi-robot task-allocation scenar-
ios. Inspired by existing techniques that employ task exchanges between
robots, this paper introduces an algorithm for solving the assignment
problem that has several appealing features for online, distributed robotics
applications. The method may start with any initial matching and in-
crementally improve the current solution to reach the global optimum,
producing valid assignments at any intermediate point. It is an any-time
algorithm with a performance profile that is attractive: quality improves
linearly with stages (or time). Additionally, the algorithm is compar-
atively straightforward to implement and is efficient both theoretically
(complexity of O(n®1gn) is better than many widely used solvers) and
practically (comparable to the fastest implementation, for up to hundreds
of robots/tasks). The algorithm generalizes “swap” primitives used by
existing task exchange methods already used in the robotics community
but, uniquely, is able to obtain global optimality via communication with
only a subset of robots during each stage. We present a centralized version
of the algorithm and two decentralized variants that trade between com-
putational and communication complexity. The centralized version turns
out to be a computational improvement and reinterpretation of the little-
known method of Balinski-Gomory proposed half a century ago. Thus,
deeper understanding of the relationship between approximate swap-based
techniques —developed by roboticists—and combinatorial optimization
techniques, e.g., the Hungarian and Auction algorithms —developed by
operations researchers but used extensively by roboticists—is uncovered.
Keywords: multi-robot task allocation, decentralized assignment, anytime
algorithms, task swapping



1 Introduction

A common class of multi-robot task-allocation mechanisms involve estimat-
ing the expected cost for each robot’s performance of each available task, and
matching robots to tasks in order to minimize overall cost. By allocating robots
to tasks repeatedly, a team can adapt as circumstances change and demonstrate
fluid coordination. A natural tension exists between two factors: running-time
is important as it determines how dynamic the team can be, while quality of the
allocation reflects the total resulting cost and hence the performance of the team.
Although the importance of solutions that trade the quality of results against
the cost of computation has been established for some time (e.g., the review in
Zilberstein (1996)), the assignment problem underlying efficient task-allocation
has received little attention in this regard.

While much work on assignment (or weighted matching) algorithms seeks
to reduce overall execution time and time complexity, the multi-robot task al-
location setting has several features requiring special consideration. These are
the result of an inherently distributed system which must tolerate failures in
order to achieve robustness in a dynamic operating environment. For example,
a single central irreplacable controller should not be relied upon to compute and
broadcast the assignment solutions but, instead, computation should be carried
out in a distributed way so that individual failures do not affect the whole sys-
tem. In addition to handling dynamics, emergencies, and unexpected contingen-
cies smoothly, a computationally flexible coordination algorithm would enable
the robot system to maintain a real-time response rates. While classic opti-
mal assignment algorithms go some way toward addressing the task allocation
problem for multi-robot systems, new solutions are needed for highly-dynamic
distributed situations.

This paper introduces an algorithm that computes the optimal allocation
of tasks to robots by employing a task swapping mechanism * : after an eval-
uation robots may opt to exchange their currently assigned tasks. This swap
primitive facilitates easy interpretation of the allocation algorithm; compared
with other optimal assignment algorithms (e.g., the matching graph based Hun-
garian method and its variants), the proposed method seems to be much easier
to comprehend in totality, easier to understand during its execution, and sim-
pler to implement. Several attractive properties of this task swapping technique
have been revealed. For instance, first, the algorithm yields a feasible alloca-
tion at any point in its execution, and the assignment is globally optimal once
the algorithm has run to completion. This means that the algorithm can be
terminated at any time before reaching the optimum and the robots will still
have a meaningful assignment to tasks. The algorithm is flezible (in terms of
computation and accuracy) because one can control the running time or level of
optimality by selecting the number of stages. Results presented below give an
easily characterizable relationship between running time and allocation quality,
allowing one factor to be traded for the other, and even for the marginal value

*The algorithm was first presented in the 2012 Robotics: Science and Systems confer-
ence (Liu and Shell, 2012a).



of computation to be estimated. Additionally, the algorithm may start from
any initial assignment solution so it can be easily used to refine sub-optimal
assignments computed by other methods.

Unlike several popular competing algorithms that compute optimal assign-
ments, the method we present has a decentralized flavor: any stage of compu-
tation naturally involves only a small subset of the robots and tasks, communi-
cation with other parts of the system may not even be required. The proposed
method does assume, however, that at each stage, the selected subset of robots
can communicate with one another in some way, either via direct communica-
tion (when robots are within communication range, or when global broadcast
communication exists) or a multi-hop network (if only local communication is
available). For each stage, the algorithm also needs an organizer robot to lo-
cate necessary members to form a party for swapping tasks. The algorithm’s
organization and communication is decentralized; with the terms of Cao et al.
(1997), each stage fits the locally centralized paradigm.

The flexibility afforded by an any-time algorithm will be counterproductive
if it comes at too high a cost. Fortunately, the method we describe has strongly
polynomial running time and we show that it can be competitive with the fastest
existing implementation even for hundreds of robots and tasks. An additional
benefit is that the cost can be borne by multiple robots because variants of the
algorithm may be executed in a decentralized way. We are unaware of another
solution to the assignment problem with these features.

To organize the paper, we first formulate the assignment problem in Section 3
and show in Section 4 that the process of solving an optimal assignment problem
can be decomposed into a series of local task swaps, and prove that existing
opportunistic local task swapping methods can lead to sub-optimality. Then in
Section 5 we develop a primal method with multiple task swapping iterations,
which we show is a re-interpretation and re-design of Balinski-Gomory’s method.
Through this presentation, we uncover the decentralized nature intrinsic to this
framework for computing assignments. Detailed algorithmic descriptions are
also provided to ease direct implementation of the method. In Section 6 two
decentralized variants of the algorithm are designed. Trade-offs between the
time complexity and solution quality are observed both from theoretical analysis
and experiments in Section 7.

2 Related Work

Task allocation is one of the central problems in distributed multi-robot
coordination (Parker, 2008). In a multi-robot system, robots need to not only
take into account the presence of other team members but also to cooperate
with them so as to achieve the best performance of the whole system. Different
assignment models have arisen in order to formulate and address differing task
allocation scenarios (see Gerkey and Matarié¢ (2004) for a review). An important
dimension within the task allocation taxonomy is the cardinality of the mapping
between robots and tasks, viz., whether the assignment relationship between



robots and tasks is one-to-one, one-to-many, many-to-one, or many-to-many. In
this work, we are interested in the problem of exclusively assigning every robot
with a unique task (one-to-one mapping), which is the most fundamental and
probably most widely investigated assignment problem.

This paper draws a connection between methods for (i.) improving local per-
formance, e.g., via incremental clique preferences improvement, and (i.) allocation
methods which seek to solve (or approximate) the global optimum of the as-
signment.

2.1 Local Task Exchanges in Task-Allocation

Several researchers have proposed opportunistic methods in which pairs of
robots within communication range adjust their workload by redistributing
or exchanging tasks between themselves (Golfarelli et al., 1997; Dias et al.,
2002; Thomas et al., 2004), also called O-contracts (Sandholm, 1998), task
switching (Sariel and Balch, 2006; Wawerla and Vaughan, 2009), and task ex-
changes (Chaimowicz et al., 2002; Farinelli et al., 2006). These intuitively ap-
pealing methods allow for a form of localized, light-weight coordination of the
flavor advocated by Stone et al. (2010). Among these existing methods, those
using task swaps for task allocation are most relevant to this work. Task (or
token) swapping among robots have been mentioned in recent work of Farinelli
et al. (2006); Zheng and Koenig (2009), etc. The main idea of the current task
swapping methods is that if the system cost can be reduced through exchang-
ing tasks between a pair of robots (or, in a generalized form, among a group
of robots), then the assignment is adjusted so those corresponding tasks are
transfered to improve the global solution quality. To date most existing task
swap algorithms for task allocation are understood and explained on the basis of
intuition alone. One exception is recent theoretical analysis (e.g. see Zheng and
Koenig (2009)) showing some properties for certain swapping contracts, called
K-swaps. (The constant parameter K is important for the solution quality, but
it not clear how it is to be determined in practice; Theorem 4.4 throws some light
on the significance of this.) Other interesting properties such as the optimality
and the running time still lack sound analysis. The method we present gives
new insight into how generalized swap-like mechanisms may ensure optimality;
in our case this is through something analogous to automatic computation of
the necessary value of K. We are also able to characterize the running-time of
the new method.

2.2 Optimal Assignment in Task-Allocation

The first and best-known optimal assignment method is Kuhn’s O(n?) Hun-
garian algorithm (Kuhn, 1955). It is a dual-based (or generally primal-dual)
algorithm because the variables in the dual program are maintained as feasible
during each iteration whilst a primal solution is sought. Many other assignment
algorithms have been developed subsequently (see the review in Burkard et al.



(2009)). Most of them are dual-based methods including: augmenting path (Ed-
monds and Karp, 1972), the Auction (Bertsekas, 1990), and pseudo-flow (Gold-
berg and Kennedy, 1995) algorithms, etc. These (and approximations to them)
underlie many demonstrations of multi-robot task-allocation, e.g., see Gerkey
and Matari¢ (2004); Nanjanath and Gini (2006); Giordani et al. (2010). Spe-
cial mention must be made of market-based methods (e.g., Dias et al. (2006);
Koenig et al. (2010)) as they have proliferated presumably on the basis of in-
spiration from real markets and their naturally distributed operation, and Bert-
sekas’s economic interpretation of dual variables as prices (Bertsekas, 1990).
Zavlanos et al. (2008) extended Bertsekas’s auction algorithm and introduced
a distributed variant in the context of networked systems. Fully distributing
the auction based methods sacrifices optimality: Lagoudakis et al. (2005) gives
bounds for some auction strategies applied in the distributed multi-robot sys-
tems.

Comparatively few papers report use of primal approaches for task-allocation;
researchers who solve the (relaxed) Linear Program directly likely use the pop-
ular (and generally non-polynomial time) simplex method (Dantzig, 1963). The
primal assignment algorithm proposed by Balinski and Gomory (1964) is a lit-
tle known method that appears entirely unheard-of within robotics. The rela-
tionship to the present work is not obvious from their presentation, but their
chaining sequence of alternating primal variables is analogous to the swap loop
transformation we have identified. The centralized algorithm we present im-
proves on their run-time performance (they require O(n?) time). Also, the data
structures we employ differ as they were selected to reduce communication cost
in the decentralized versions, which is not something they concern themselves
with.

3 Problem Description and Preliminaries

We consider the multi-robot task assignment problem in which the solution
is an association of each robot to exactly one task, denoted SR-ST-1A by Gerkey
and Matari¢ (2004). An assignment A = (R, T') consists of a set of robots R and
a set of tasks T. Let matrix C' = (¢i;)nxn, where ¢;j: R x T'— RT represents
the cost of having robot i perform task j. Without loss of generality, in our
work, n = |R| = |T|, the number of robots is identical to the number of tasks
(otherwise dummy rows/columns can be inserted).



3.1 Formulations

This problem can be formulated with an equivalent pair of linear programs.
The primal is a minimization formulation:

minimize f = E CijTij,
4,

subject to inj =1, Vi,

J
Zwij =1, Vj,

where an optimal solution eventually is an extreme point of its feasible set (so

each x;; equals to 0 or 1). Let binary matrix X = {z;;}, V(i,7) contain the
primal variables. The constraints T =1 and ), x;; = 1 enforce a mutual
ezxclusion property, so that no two robots are assigned with the same task and
no two tasks are allocated to the same robot. There are corresponding dual
vectors u = {u;} and v = {v;}, with dual linear program:

maximize g = E u; + E vy,
i J

subject to u; +v; < ¢y, V(i J).

(2)

3.2 Reduced Cost, Complementary Slackness, and Feasi-
bility
Reduced costs are defined as follows

Cij = Cij — Ui — Vj, V(i, ). (3)

For a maximization dual as shown in Program (2), its constraint shows that
an assignment pair (4, j) is feasible when and only when ¢;; > 0.

The duality theorems show that a pair of feasible primal and dual solutions
are optimal iff the following is satisfied:

zij(cij —ug —vj) = x45C;5 = 0, V(i,j). (4)

Equation (4) is called complementary slackness condition, which reveals the
property of orthogonality between the primal variables and reduced costs. It
also indicates that, if a robot-task pair (7, 7) is assigned, i.e., ;; = 1, then the
corresponding reduced cost ¢;; must be equal to 0.
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Fig. 1: Primal transformations are task swaps. (a)A cost matrix with two
independent swap loops, where shaded and bold-edged squares represent old
and new assigned entries, respectively; (b) Task swapping from an independent
swap loop (e.g., left closed loop in (a)) among four robots and tasks.

3.3 Transformations and Admissibilities

Primal and dual transformations and, in particular, their admissibilities are
used later in the paper.

o Admissible Primal Transformation: Map Z, : X — X' is an admissible
primal transformation if the primal solution quality is better after the trans-
formation, i.e. X' = Z,(X) is admissible iff f(X') < f(X) for a minimization
problem.

o Admissible Dual Transformation: Zg: (u,v) — (u’,v’) is an admissible
dual transformation if the size for the set of feasible reduced costs increases, i.e.,
(', v') = Zy(u,v) is admissible iff [{(4, ) | &; > 0} > [{(4,7) | &; > O}].

4 Task Swapping and Optimality

Any primal transformation X’ = Z,(X) is easily visualized by superimposing
both X and X' on an assignment matrix. Shown as shaded and bold-edged
entries in Fig. 1(a), the transformations can be interpreted as row-wise and
column-wise aligned arrows, each of which bridges exactly one shaded entry
(old assignment) and exactly one bold-edged entry (new assignment). Note
that both types of such entries have reduced costs equal to 0s. Connecting the
beginning of the chain to its end closes the path, forming what we call a swap
loop. They are easily imagined as a subset of robots handing over tasks in a
chain, as illustrated in Fig. 1(b).

If a swap loop shares no path segment with any other, it is termed indepen-
dent.

Theorem 4.1. A primal transformation X' = Z,(X) where (X # X') forms a
(non-empty) set of independent swap loops.

Proof. The mutual exclusion property proves both parts.
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Fig. 2: An amalgamation allows synthesis of complex swap loops from multiple
dependent swap loops. Overlapped path segments cancel each other out.

Independence: if a path is not independent, there must be at least one segment
that is shared by multiple paths. Any such segment contradicts the mutual
exclusion constraints since either >, x;; > 1, or >, 27, > 1, or both.
Closeness: a non-closed path has end entries that are exposed; but this leads to
Ej x;j =0or leij =0.

O

Assume Ss,,, = {swpr} (A € [1,m]) is a set of swap loops where swpy
denotes the A\** swap loop. Let primal transformation X — X' with specific set
of swap 100ps Seup also be denoted as X' = Z,% 7 (X).

Theorem 4.2. A primal transformation involving mutually independent swap
loops Sswp = {swp1, swps, - - , swpm,} can be separated and chained in any ran-
dom order, i.e., X = zi=wriy(glswrzd . glswrm} (X))

Proof. A primal transformation is isomorphic to a set of row and column per-
mutations. Assume the row and column permutation matrices (each is a square
orthogonal binary doubly stochastic matrix) corresponding to set Sy, are P
and Q, so that PXQ permutes the rows and columns of X appropriately. If
row 4 is unaffected, then the i*" column of P, p; = e; (the i*" column of the
identity matrix) and P = H;nzl P, where P, represents the separated per-
mutation matrix for the A" swap loop, will have a non-interfering form so
that the order of the product does not matter. Thus we have X' = PXQ =
PiPs Py XQmQm-1- - Q1 (order of Py’s do not matter, nor do Q,’s anal-
ogously), which is equivalent to X/ = Z§*P (z{#r2d ... zi=wrnd (X)),

O

However, many times independent swap loops cannot be directly obtained.
Instead, an independent swap loop may be composed of multiple dependent swap
loops that share rows/columns on some path segments.

Theorem 4.3. Two dependent swap loops with overlapping, reversed segments
can be amalgamated into a new swap loop, and vice versa.



Proof. A directed path segment can be conveniently represented as vector 7,
as shown in Fig. 2. Overlapping path segments 77 and 75 in the same rows
or columns, but with different directions, cancel via 7 =7+ 75, which has
interpretation as a task (robot) handed from one robot (task) to another, but
then passed back again. Such cancellation must form a loop because each merger
collapses one pair of such segments, consistently connecting two partial loops.

The opposite operation (decomposition) involves analogous reasoning.
O

While ordering of independent swap loops is unimportant, the number, size,
and order of dependent loops matter.

Theorem 4.4. When K < n, K-swaps are susceptible to local minima.

Proof. A K-swap loop involves at most K robots and K assigned tasks. Quies-
cence results by reaching equilibrium after sufficient K-swaps so that no more
swaps can be executed. Robots and their assigned tasks involved in the K-swap

can form a smaller sub-assignment of size K. Thus, we have IT; possible such

sub-assignments and all of them are optimal at equilibrium. Assume the set

of these sub-assignments is Sy = {A,}, where v € [1, A, ={R,,T,}

n
represents the sub-assignment with robot (task) index set |[R,| = K (|T,| = K).

Therefore, the dual program for each sub-assignment is:
max g(Ay) = Y uwi+ > v, (5)
i€R,, JET,
subject to u; +v; < ¢y, Vi€ Ry,jeT,. (6)

If we put all the sub-assignments together, the objective of the whole assign-
ment problem can be written in the form

(7)) S meotan )

vE[L[Sal]

where the first term in the product accounts for the repeated summation of
each dual variable. By the fact that ). (max z;(x)) > max ), zi(x), (zi(x)
are arbitrary functions of z), we have

(In{—ll) - 3 max g(4) > max Y. | <In{_11) _19(A7)

YE[L,[SAl] ~E[L,Sa (8)
= max g(A)

where A is the original n x n assignment. With the duality theorems, this is
equivalent to

<;_11) Z min f(A,) > min f(A). (9)
vE[

1,1Sall
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Fig. 3: Illustration of the sub-optimality of K-swaps. (a) A cost matrix with
sub-optimal assignment solution (shaded in circles) after sufficient 2-swaps; (b)
The optimal solution can only be obtained via a 3-swap, indicating K must be
3 (=n) in this case.

So even completing every possible K —swap, and doing so until equilibrium is

reached, may still end sub-optimally.
O

The assignment in Fig. 3 shows an example of the sub-optimality. The cost
matrix is constructed from 3 robots (row indices) and 3 tasks (column indices).
In Fig. 3(a) the current assignment solution is denoted by those shaded entries.
Assume that the robots can only do a series of 2-swaps (K = 2), then there are

3
<2) = 3 possible pair-wise swaps among the robots. Fig. 3(a) shows a local

minimum since no further 2-swaps can proceed. The optimal solution is shown
as the shaded entries in Fig. 3(b). To transfer from the assignment in Fig. 3(a)
to the optimal solution, a 3-swap has to be executed, illustrated as the loop in
Fig. 3(b).

5 An Optimal Swap-based Primal Method

The complementary slackness in (4) indicates that if a robot-task pair (7, j) is
assigned, then the corresponding reduced cost ¢;; must be equal to 0. Moreover,
no ¢;; can have a negative value due to the constraint in Program (2). The
essence of the proposed task swapping method is that, as the algorithm proceeds,
those infeasible (negative) ¢;; are successively turned into feasible ones. While
this proceeds, there is always a set of mutually excluded entries with reduced
costs equal to zero, so that an assignment solution is always known, although it
might be different from stage to stage.

In fact searching for a swap loop is actually precisely the procedure to seek
a better feasible assignment solution so as to supersede the current assignment.
To be precise “better” here is in the sense of improved (admissible) primal and
dual transformations.



The results in Section 4 suggest that to obtain the optimal primal trans-
formation, one seeks a set of independent swap loops, but that these can be
equivalently sought as a series of dependent swap loops. The primal assignment
method we describe achieves this iteratively and avoids local minima because
later swaps may correct earlier ones based on “enlarged” views that take into
account all rows and columns that have been examined so far. At any time, the
primal solution’s feasibility is maintained (i.e., the mutual exclusion property
is satisfied), while infeasible dual variables are manipulated under the com-
plementary slackness condition. At each iteration either an admissible primal
transformation is found, or a new improved set of dual variables is obtained.
Once all reduced costs are feasible, the primal and dual solutions simultaneously
reach their (identically valued) optimum.

Algorithm 5.1 PRIMAL (C)
1: init arrays u[n] := {0}, v[n] := diag(C), C[n][n] := {0}
2: for i:=1tondo ,
update matrix C with Cyjt =Cy 0 — Uy — Vg, Vi,j
4:  if min{C[:][i]} < 0 then
5 array 0[n] := {0} B
6: heap h[n] := PRE-PROCESS(C, u, v)
7: check the ith column of C, get smallest-valued entry (z,y)
8
9

’

o

SWAP_LOOP(C, §, h, z, y)
: for j:=1tondo
10: ulj] == ulj] + 6(a(5)), vlj] := v[j] - 6[j]

11: vly] = vly] = [Clz][y] — ue — vy| so that Cla]ly] =0
12: if a swap loop found, swap tasks to augment solution

Note: Variable u; and u[i] are equivalent, vector v = v[n], matrix C = C[n][n].

The algorithm is organized as follows: the outline of the procedure is in Al-
gorithm 5.1, and critical steps are described in Algorithms 5.2-5.4 in some detail
to ensure that the pseudo-code is appropriate for straightforward implementa-
tion. In Algorithm 5.1, there are at most n stages, each of which searches for
a swap loop to obtain an admissible primal transformation (note that this may
trigger the dual-update operation during the re-searching step). Since every
primal transformation is admissible, the assignment solution never deteriorates
and will actually improve with each iteration.

5.1 Algorithm V.2: Pre-processing

At each stage, the reduced cost matrix C is pre-processed before searching
for a swap loop: a separate min-heap is used to maintain the feasible reduced
costs in each row, so that smallest values (root elements) can be extracted or
removed efficiently.



Algorithm 5.2 PRE-PROCESS (C, u, v)

1: initiate n min-heaps hin| := {null}

2: fori:=1ton do

3: for j:=1ton do

4 if C[i][j] > 0 AND j # a(i) then

5 make pair p := (label = j,value = C[i][j])
6: insert p into hi[i]
7

: return min-heaps h

5.2 Algorithm V.3: Searching for Swap Loops

Any swap loop yields an admissible primal transformation. Loops are sought
by bridging path segments in the reduced cost matrix. A horizontal path seg-
ment is built from a currently assigned entry to a new entry with reduced cost
of zero in the same row. If there are multiple zero-valued reduced costs in
the same row, multiple horizontal path segments are built by connecting their
corresponding entries to the unique assigned entry in that row. Vertical path
segments are implicitly identified from the entries of the zero-valued reduced
costs to the uniquely assigned entries in the respective columns. Fig. 4(a) shows
the process. The search uses a tree, expanded in a breadth first fashion, to find
the shortest loop; a dead-end (i.e., empty queue) triggers the dual adjustment
step.

Algorithm 5.3 SWAP_LOOP (C, h, §, z, y)
1: starting row rs := x, column ts :=y, Sgp := St := O
2: initiate r 1= a" ' (y), t :=y, Vpath(t : rs —r)
3: push r into queue Q, color(Sg U {r}; St U {ts})
4: while Q not empty AND Q.front # rs do

5 r:=Q.front, Q.pop once

6:  initiate set S5 := {r}

7: for each r € Ss do

8: t := h[r].extract.label

9: while p(r,t)' =0 do
10: if t ¢ St then
11: Hpath(r : a(r) —t), Vpath(t : r — a~*(t))
12: push a™'(¢) into Q, color(Sg U {a™*(t)}; St U {t})
13: h[r].remove root element and update root
14: update ¢ := h[r].extract.label
15: if @ empty then
16: DUAL_ADJ (G, Q, h, 8, Ss, 75, ts)
17: if updated Ss not empty then
18: go to STEP 7
19: return

20: Hpath(rs : t — ts), form a loop

t: p(+) is a projection of reduced cost, defined in (12) on page 14.
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Fig. 4: (a)Path segments are bridged with one another while searching for
swap loops. Shaded entries are currently assigned, and bold-edged entries have
reduced costs equal to zero. Waved lines represent the paths found after dual
adjustments; (b) The associated tree data structure that aids efficient searching.

In Algorithm 5.3, function ¢ = a(r) denotes the assignment for r is ¢ and thus
is used to extract the column index with a given row index; the inverse does
the reverse. Horizontal (vertical) segments are constructed via Hpath(cur_row :
coll — col2) (Vpath(cur—col : rowl — row2)), where the three domains represent
the current row (column) containing the path, the starting column (row) and
the ending column (row) for the segment, respectively. The coloring on visited
rows/columns is merely the set union operation.

5.3 Algorithm V.4: Dual Adjustments

If all branches reach dead-ends, dual adjustment introduces entries with
zero-valued reduced costs so that the tree may be expanded further. This is
done by changing the values of dual variables, which indirectly changes the
reduced costs of corresponding entries. Doing so must increase the size of the
set of feasible reduced costs, so the dual adjustment will never cause the current
result to deteriorate. The method subtracts the smallest feasible reduced cost
from all visited (colored) rows and adds it to every visited column, producing
at least one new zero-valued reduce cost(s). Waved arrows in Fig. 4 show this
procedure.

Next, we turn to the relationship of this approach to Balinski-Gomory’s
primal technique (Balinski and Gomory, 1964). Theoretical complexity and em-
pirical results below show the superiority of the swap-based approach. Never-
theless, examining the conceptual differences in some detail is worthwhile since a
common underlying idea is involved: Balinski-Gomory’s method employs itera-
tive labeling and updating techniques to seek a chaining sequence of alternating
primal variables, which are used to adjust and augment the primal solutions.

By way of contrast, we highlight three aspects of the presented algorithm
worthy of highlighting:

1. The swap loop search incorporates the dual adjustment procedure. In each



Algorithm 5.4 DUAL_ADJ (C, Q, h, &, Ss, s, ts)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

1
2
3
4
5:
6
7
8
9

. array top_d[n] := {o0}, col_d[n] := {0}

for i:=1tondo
if row i € Sr then
top_d[i] := p(i, hli].extract.label)
min_d := min{top_d[i]}

: if min_d > 0 then

update S5 := {i | top-d[i] = min_}

: else

min-d := —p(rs, ts)
for i:=1tondo
if row i € Sg then
update d[a(i)] := d[a(i)] + min_0
col_d[i] :== p(i,ts)
if min{col_d[i]} > 0 then
terminate current stage
update starting row ry := argmin,{col_d[¢]}
if r; € Sg then
Hpath(rs : a(rs) — ts), form a loop
terminate current swap loop searching

stage Balinski-Gomory’s method may require n rounds of traversals and
cost O(n) more steps. We reduce the traversals by building and maintain-
ing a search tree. Traversals between nodes of different hierarchical levels
(depths) become especially convenient and cheap. (New nodes introduced
by dual adjustments could be expanded at any level, not necessary at the
leaf nodes of the lowest level.) This modification is most significant in the
decentralized context as each traversal incurs communication overhead.

. Instead of directly updating u, v, the § array accumulates the dual variable
adjustments during each stage. All updates are transferred to u and v
once the whole stage is completed:

, (w) ;
u;: ul+2w5.a(i)’ Vi € Sr (10)
u; otherwise,
_ (@) ;
o= L Zwé.J , VjeSr (11)
v; otherwise,

where Si and St are index sets of colored rows and columns, respectively,
and w is the iteration index. The benefit here lies in that reduced costs in
the whole matrix need not be immediately updated on each dual variable’s
adjustment. Instead, a query of reduced cost Egj for the individual entry
(i,7) during an intermediate stage can be obtained via a projection p(i, j):

iy = p(i,7) = Cij + 65 — dagi)- (12)



3. Swap loops are found more efficiently: for example, the heaps, coloring
sets, and tree with alternating tree nodes — assigned entries with n-ary
branches, and unassigned entries with unary branches— quickly track the
formation of loops even when the root is modified (this occurs in Step 16
of Algorithm 5.4).

5.4 Correctness

Assume the starting infeasible entry of matrix is (k,!) with reduced cost
Crl = Cpp — ugp — v < 0.

Theorem 5.1. Once a task swap loop starting from entry (k,1) is obtained, the
task swaps must lead to an admissible primal transformation.

Proof. Term c;jx;; contributes to f(X) =37, ; ¢;jzi; only when binary variable

zi; =1 and ¢;; = u; + v; (see (4)). With (10) and (11):

fXN) = f(X) = Z(UQ +0f) = Y (ui+ ;)

(2]

i,
=37 (u = i+ vl —va)

3
=2 (Z o~ Zé%) — léwl

=ci < 0.

(See Step 11 in Algorithm 5.1.) Thus, the value of the primal objective must

decrease after a swap.
O

Theorem 5.2. If no task swap loop starting from entry (k,l) is found, an
admissible dual transformation must be produced.
Proof. First, feasible reduced costs remain feasible:

’

’ 7
Cij =Cij —U; —V;

J
= Cij — U; — (551?1)) — 'Uj + Z 5‘50.))

= (w) _ (w)
=2+ )67 = > 00 (14)

61] 207 ViESRajEST
=0 & +Y, 8 >0, Vi¢SrjeSr

Cij = D 5((1?1')) 20, Vi€ Sr,j & S



Term ¢;; — >, (52% > 0 is because ) 5&% accounts for the smallest feasible

reduced costs from all colored rows, so >~ (538) is always less than or equal to
Cij. Moreover, those entries that are neither in Sg nor Sp remain unchanged.
Second, at least ¢x; will become newly feasible, leading to termination before
formation of a swap loop. This fact is true even in the more sophisticated strat-
egy allowing dynamic updating of starting entry (see Step 16 of Algorithm 5.4).
This proves that the set of feasible reduced costs must increase.
O

5.5 Time Complexity

Algorithm 5.1 requires at most n stages. In each stage the smallest infea-
sible reduced cost in each column is selected (Step 7 of Algorithm 5.1), so all
other infeasible entries in the same column must also become feasible. The
pre-processing using min-heaps for any stage requires O(n?1gn). During each
stage, there are at most n DUAL_ADJs for the worst case and each needs O(n)
time to obtain min_d using the heaps. Visited columns are colored in a sorted
set and are never considered for bridging future paths within a stage. There
are at most n? entries to color and check, each costs O(lgn), yielding a total
of O(n?lgn) per stage. Therefore, the total time complexity for the whole al-
gorithm is O(n®lgn). The light-weight operations involved result in a small
constant factor.

By way of comparison, Balinski-Gomory’s primal method uses O(n?) search-
ing steps with O(n?) time complexity for each step. Some researchers (Cunning-
ham and A.B. Marsh, 1978; Akgiil, 1992) have suggested that it may possible
to further improve the time complexity to O(n3) using techniques such as the
blossom method (Edmonds and Karp, 1972). To the best of our knowledge, no
such variant has been forthcoming.

In addition, we note that although the min-heaps in Algorithm 5.2 are cre-
ated in a separate step, this is to simplify the description. In practice they
can be constructed on the fly when required; although the time complexity is
unchanged, one may obtain a better practical running time in this way. Our
experimental results also show that using a fast approximation algorithm for
initialization produces running times close to the fastest existing assignment
algorithms with O(n?) time complexity.

6 Distributed Variants

Distributed variants of our primal method are easily obtained. Swap loops
are searched via message passing: messages carrying dual variables (u,v) and
dual updates § are passed down the tree as searching progresses. The idea
is illustrated in Fig. 5 with four robots executing a single stage of the swap
loop search. The lines in Fig. 5(a) show the initial pairwise robot-task assign-
ment; the arrows in Fig. 5(b) show bridging edges found by searching for a
swap loop starting from a selected pair. If the path’s ending pair connects to
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Fig. 5: Swap loop searching in a multi-robot system using the Euclidean distance
as a cost metric. Circles represent robots and triangles denote the tasks.

the starting pair, then a swap loop has been found (Fig. 5(c)) and tasks can
be exchanged among the robots in the loop. The resulting assignment is shown
in Fig. 5(d). Note that the edges connecting to the tasks (triangles) are for
illustration purposes, and should not be interpreted as a communication topol-
ogy since obviously a task cannot pass a message. In reality, the messages are
passed and processed by the associated robots who are currently assigned to
these tasks. An additional reason for using this graph depiction is that it shows
the searching structure shown in Fig. 4 directly, but in the physical space. This
graph representation is also regarded as hypergraph. It describes the association
relationship between robots and tasks, but not the connections among items of
the same type. Advantages of the hypergraph view are discussed in Liu and
Shell (2012b).

One challenge is that, unlike centralized algorithms, the cost matrix may be
not globally visible. Instead each robot maintains and manipulates its own cost
vector associated with all the tasks. One noteworthy feature is that a robot
need not know the cost information of other robots, since the two arrays of dual
variables are shared. We do assume that the initial assignment solution and the
corresponding costs for the assigned robot-task pairs are known by all robots,
so the initial reduced costs for each robot may be calculated locally.

The decentralized version of the algorithm can be understood in terms of
two roles: a organizer robot that holds the starting infeasible entry, and the
remainder being member robots (but with unique IDs). The organizer initiates
a swap loop search iteration at stage m by communicating a message containing
the dual information u,,_1, v,;,—1 obtained from stage m — 1, as well as a newly
created dual increment vector d,,. A successor robot is located from either
the assignment information or the newly found feasible and orthogonal entries
satisfying the complementary slackness, as in the centralized case. When a
path can no longer be expanded, member robots at the respective “dead-ends”
request a dual adjustment from the organizer. Once the organizer has collected
requests equal to the number of branches, it computes and transmits d,,,. The
process continues until a swap loop is found and tasks are exchanged. At this
point, the organizer either re-elects itself as next stage’s organizer, or hands
over the role to other robots, based on different strategies discussed below. The
roles are described in Algorithms 6.1 and 6.2.



Algorithm 6.1 Organizer (W;,—1, Vin—1, Om)

1: initiate: > only once

decide starting entry ., ym for current stage m

send msg(Wm—1,Vm—1) to member with ID ail(y)

: listening:
if all involved IDs request dual adjustments then

compute d,,, send it it to corresponding ID(s)

endif

if swap loop formed then
with 8., update Wm—1, Vin—1 tO Wm, vy, for next stage
decide next organizer j and send msg(um,vm) to ID j

=
=

Algorithm 6.2 Member[i] (organizer 1D, U;,—1, Vin—1, 0m)

1: update ¢;; Vj with received Um—1,Vm-1 ,0m

2: if {j | ¢i; =0} # @ then

3: foreach jof {j|c;=0,7+#a(i)} do

4 send (Wm—1,Vm—1,0m) to ID a_l(j)

5: send newly involved IDs and No. of new branches to organizer
6: else

7 send min{¢;;l¢;; > 0,Vj} to organizer, request dual adjustment

Once a reduced cost becomes feasible it never becomes infeasible again (see
Theorem 5.2) so the algorithm needs to iteratively transform each infeasible re-
duced cost to approach global optimality. Two different approaches for locating
and transforming the infeasible values lead to two versions of the algorithm:
task-oriented and robot-oriented variants.

6.1 Task Oriented Variant

The task oriented approach attempts to cover all infeasible reduced costs
of one task before moving to the costs of other tasks. It operates column-
wise in the cost matrix. The task oriented approach mimics the procedure
of the centralized version: for any given task (column), the robot holding the
smallest projected infeasible reduced cost is elected as the organizer. During
the swap loop searching stages, it is possible that after some DUAL_ADJs other
members hold even “worse” projected infeasible reduced costs. Therefore, after
each update of §, the organizer must check all members involved within the
current tree, and hand over the organizer role if necessary.

6.2 Robot Oriented Variant

The robot oriented method aims to cover all infeasible reduced costs of one
robot before transferring to another robot; it works in a row-wise fashion. The
organizer is randomly selected from all members that hold infeasible reduced
costs; it keeps the role for the whole stage. Monitoring “worse” projected costs is



Fig. 6: Illustrations of task oriented (a) and robot oriented (b) strategies. Here
shaded entries have infeasible reduced costs. Solid and void stars represent
current starting entry and (possibly) next starting entry, respectively.

not required, but each stage only guarantees that the starting entry will become
feasible, not the others. This means the organizer needs to iteratively “fix” all
its infeasible reduced costs stage by stage before transferring the organizer role
to a successor.

Comparing the two variants:

(A.) The advantage of the task-oriented scheme is that at most n stages are
needed to reach the global optimum, since each stage makes all infeasible
reduced costs associated with a task feasible. Its disadvantage is the ex-
tra communication involved because at the beginning of each stage, the
member holding the smallest reduced cost for the chosen task has to be
determined/elected; additional communications are required for the mon-
itoring aspect too.

(B.) The robot oriented strategy has greater decentralization and eliminates
extra communication for monitoring (a disadvantage mentioned in the task
oriented scheme). At any stage only a subset of robots need be involved
instead of requiring participation of all robots. The disadvantage of this
variant is that a total of O(n?) stages is needed. (Note, that here each
stage is still equivalent to O(n) steps/stages of Balinski-Gomory’s method)

7 Experiments

Four forms of experiment were conducted: run-time performance of the cen-
tralized algorithm, access pattern analysis, demonstration with a dispatching
scenario, and comparison of the decentralized variants.

7.1 Algorithmic Performance Analysis

We implemented both our swap-based algorithm and Balinski-Gomory’s
method in C++ (with STL data structures), and used an optimized imple-
mentation of the Hungarian algorithm (O(n?) complexity) available in the dlib
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Fig. 7: Comparison of running times: (a)Time from an optimized Hungarian
method, the Balinski-Gomory’s method, and the swap-based algorithm. Primal
methods start with random initial solutions; (b) Running time is improved when
the algorithm is combined with a fast approximation method.

library (http://dlib.net) for comparison. The experiments were run on a stan-
dard dual-core desktop with 2.7GHz CPU and 3GB of memory. Fig. 7(a) shows
the performance results. We observe that the swap-based algorithm has a sig-
nificantly improved practical running time over the Balinski-Gomory’s method.
The flexibility of the algorithm allowed for further improvement: fast approxi-
mation algorithms can give a reasonable initial assignment. Fig. 7(b) shows the
improvement using an extremely cheap approximate assignment that assigns the
robot-task pairs with lowest costs first, in a greedy manner. This reduces the
practical running time to be very close to the Hungarian algorithm, especially
for matrices with n < 300.

To analyze solution quality as a function of running-time, we computed
scenarios with 100 robots and 100 tasks with randomly generated c;; € [0, 10%]
Vi,j. The solution qualities and time consumed for individual stages appear
in Fig. 8. The solution quality is measured by parameter 7 calculated as a
ratio of current solution «; at current stage 7 to the final optimum «,,, i.e.,
17 = a;/a, > 1. In each figure, the three series represent initial assignments
with different “distances” to the optimal solution. A 60% processed initial
solution means the initial solution is ago (the solution output at 60" stage
from a random initialization). The matrix is column-wise shuffled before the
input of a processed solution such that a new re-computation from scratch must
be executed (otherwise it is equivalent to the continuing computation). We
see that the solution qualities for all three scenarios change close to linearly
with the number of stages, indicating the “step length” for the increment is a
constant. From this observation, computational resources and solution accuracy
are fungible as each is controllable in terms of the other. Given a current solution
Q. at the m™ stage (m > 1) as well as an initial solution o, the optimum can
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be estimated as
: + )
Qp = Qo —(am —
= o + nA,,

where Ay > 0 is the step length of solution increment. To bound the accuracy
within 1 + €, where € > 0, assume we need to stop at fth stage. With following
relation

Qo — QAS

O

<l1+e, (16)

finally we get
g> 20— (14 €)(apg — nAy)

> As (17)

7.2 Access Patterns Show Suitability for Distribution

Intuitively, entries in the spanning tree during each stage reflect the cost
of communication.! Thus, we compared the access pattern of our swap-based
algorithm with Balinski-Gomory’s method on 100 x 100 matrices with random
initial assignment. Fig. 9 shows that the swap-loop traversal results in a large
reduction in accesses: in our algorithm the average is ~ 100 for each stage,
in contrast with Balinski-Gomory’s method requiring ~ 700 with larger stan-
dard deviations (actually, reaching more than 8,000 traversals when many dual
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Fig. 9: (a) (b) Entries traversed during stages.

adjustments occur). The results quantify claims made about the swap-based
method fitting a decentralized paradigm.

We also investigated the total number of rows (and, correspondingly, columns)
involved during each stage, which reflects the number of involved robots in de-
centralized applications, as well as the size of swap loops formed at the end of
the stages (defined as the number of colored rows). Fig. 10 shows results from
randomly (Fig. 10(a) and 10(b)) and greedily (Fig. 10(c) and 10(d)) initiated
solutions. We see that the number of rows involved can be significantly reduced
with better initial solutions, and loops are comparatively small for either case.

More detailed statistics are given in the table below. We conclude that
improving initial assignment solutions not only improves running time but also
reduces the communication costs. The (averaged) longest swap lengths show
that the admissible primal transformations are a series of small swaps (one can
regard the longest length equivalent to K of K-swaps), but which still attains
optimality.

7.3 A Dispatching Scenario

We validated our algorithm in a realistic task allocation problem: dispatch-
ing a group of robots to a set of tasks both of which are randomly distributed in
space, as shown in Fig. 11. The circles represent robots and the smaller square
dots denote tasks (robot and task IDs are labeled on top of them). The costs
in the cost matrix are the Euclidean distances between the robots and tasks (in
other complex scenarios, e.g., with obstacles in the environment, the costs are
the lengths of the planned paths). The left three figures, i.e., Fig. 11(a), 11(c)
and 11(e) are the results from random initialization: we initially assign the

TEvery traversed entry on the path segments, no matter whether it is assigned or unas-
signed, must connect to a new entry in other rows, requiring a message be passed. The
number is approximately half of all the traversed entries since each entry is counted twice for
the analysis of communication complexity.
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robots to the tasks with the same IDs. In contrast, the right three figures
(Fig. 11(b), 11(d) and 11(f)) are results using the greedy initialization: a robot
takes the nearest available task, labels it as occupied, until every robot obtains
a unique task.

Fig. 11(a) and 11(b) show the final graph constructed during the searching
of a swap loop in a particular iteration (the organizers are the 40" robots
for both cases). The graph can be regarded as hypergraph as mentioned in
Section 6, which displays the searching structure directly in the physical space.
The swap loops are highlighted with thickened lines. The two figures reveal
that in order to find a swap loop, only a subset of robots (and tasks) need to be
involved. Fig. 11(c) and 11(d) are the corresponding cost matrices. The current
assignment solutions are denoted by shaded entries in both matrices. We can
also see that the shaded entries are generally aligned along the diagonal in
Fig 11(c), which reflects the degree to which is close to the “initial” assignment.
Path segments are bridged with thin lines and the swap loops are also highlighted
in thicker lines. Finally Fig. 11(e) and 11(f) show the communication graph in
which communication links were established between robots. The swap loops
are also denoted in thick lines. The dashed ellipses outline the range of robots
involved in communication. Comparing the figures between left column and
right column we find that a good initial solution has the following advantages: it
requires lower communication costs as the number of communication links/edges
is smaller; the swap loop is also shorter which reduces the costs of task swapping
operations; the communication tends to be more localized since the search scope
is narrower.

7.4 Results from Decentralized Variants

We also implemented both variants of the decentralized algorithms described
in Section 6 and distributed them over five networked computers for testing.
The implementations can be directly applied to distributed multi-robot task-
assignment, e.g., as the test routing problems in Berhault et al. (2003); Liu and
Shell (2011). The hosts were given unique IDs from 1 to 5, and communication
performed via UDP, each host running a UDP server to listen to the messages
sent by its peers. Information such as the IDs of machines, values of dual
variables, requests of dual adjustments, etc., were encoded via simple protocols
over the message passing. To initiate the system, we injected 5 tasks with
IDs from 1 to 5 and each machine randomly generates an array of cost values
associated with these 5 tasks. The initial allocation assigns every machine with
ID to the task with the identical ID; the corresponding costs for these assigned
pairs are communicated. An initial organizer is randomly selected.

Both distributed variants of the algorithm were tested. Fig. 12(a) shows the
number stages used for the two schemes (average and variance for 10 separate
instances). Fig. 12(b) and Fig. 12(c) show the communication cost (number of
messages) and robots involved (ever having received/processed messages) per
stage, respectively. These empirical results also validate the claims made above:
(¢) the task oriented scheme requires fewer stages, but has greater communica-



Fig. 11: Task allocation (dispatching) with 50 robots and 50 tasks. (a)(b)
Searching a swap loop in the Hypergraph representation; (c)(d) Swap loop
searching in the cost matrix; (e¢)(f) Real communication graph among robots.



Stages Communication Robots Involvement

5
20 T 5
2 24
%] o
g g 15 g
8 % ;3
[} [0} -
s E0 g
s S £,
b4 o S}
“ s 21
0 0

PN

(b)

Fig. 12: Performance of the task oriented (T-O) and robot oriented (R-O)
decentralized implementation. Measurements of 5 hosts to 5 tasks.

tion per stage; (ii) although the robot oriented method uses more stages, less
the communication and fewer the robots are involved.

8 Discussion and Future Work

Along with the presentation and analysis of this method, several features
have been revealed distinguishing it for other popular assignment algorithms
applicable in the distributed multi-robot domains. In summary, we highlight
features of the introduced method:

e Natural primitives and optimality: the method is based on task swap loops,
a generalization of O-contracts, task-exchanges, and K-swaps; these are
techniques which have intuitive interpretations in distributed systems and
natural implementations. However, unlike other swap-based methods,
global optimality can be reached.

e Computational flexibility and modularity: the algorithm can start with any
feasible solution and can stop at any point. The solution remains feasible
and quality is non-decreasing. It can be used as a portable module to
improve non-optimal assignment methods, e.g., some variants of market-
based, auction-like methods.

o Any-time and efficiency: Unlike primal techniques for general LPs, opti-
mality is reached within strongly polynomial time. Initialization with fast
approximation methods makes it competitive practically, and it can po-
tentially be further accelerated. Additionally, the linear increase in the
solution quality makes balancing between the computation time and as-
signment accuracy possible.

e Ease of implementation: the algorithm uses simple data structures with
a straightforward implementation that is much simpler than comparably



efficient techniques.

e Ranked solutions: assignments are found with increasing quality, allowing
fast transitions to good choices without re-computation if commitment to
the optimal assignment fails.

e Decentralized Variants, Local Computation €& Communication: a small sub-
set of robots are typically found to be involved. The decentralized variants
of the algorithm require no single privileged global controller. They al-
low one to choose to trade between decentralization (communication) and
running time (number of stages).

However, there are still some issues that need to be investigated further,
which are also our ongoing and future work. One critical problem is the commu-
nication constraints. More specifically, although only a subset of robots can be
involved and communicate at each algorithmic stage, this method still requires
a complete communication network in which every pair of robots is connected.
This may be a strong assumption for many distributed multi-robot systems. For
example, some systems can guarantee only local communications within certain
ranges and a robot might not be able to establish a communication channel with
a distant robot. In such a case searching for a swap loop may fail when the tree
cannot be completed to find the loop.

There are a couple of possible ways to improve this algorithm under the com-
munication constraints, which also depend on whether the solution optimality
may be sacrificed or not.

e If solution optimality is mandatory then at each stage the tree must be
fully constructed so that all reduced costs associated with a particular task
are guaranteed to be feasible. Therefore, if a direct communication chan-
nel between two robots is not available, multiple hops will be necessary to
pass the messages from one end to the other, with multiple robots in mid-
dle doing routing work. The communication costs of such methods may
increase significantly and an algorithm for efficiently finding the multi-hop
routing paths given the form of the tree search has to be designed.

e Is solution sub-optimality is acceptable then the searching tree need not
be complete, thus the branches that are not directly reachable can be
pruned. Inevitably, the branch pruning will lose the view of the whole
problem which may, consequently, sacrifice global optimality.

9 Conclusion

Claims have made in various places about auctions and, by general exten-
sion, dual methods being especially suited to multi-robot systems because they
are inherently distributable, because the whole cost matrix need not be disclosed
to peer agents, and since their treatment of the optimization steps (i.e., modifi-
cation of dual variables) can be seen as transmitting bids and/or sharing price



information. This paper shows that primal methods can have an equally com-
pelling interpretation: that of task swaps. These swaps are a natural paradigm
for decentralized optimization, have been used for years, and identified inde-
pendently by several groups. It is now, using the algorithm we present, that
optimality can be reached with these same primitive operations. Additionally,
we have sought to emphasize the useful anytime aspect of primal techniques.
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