
Large-Scale Multi-Robot Task Allocation via

Dynamic Partitioning and Distribution

Lantao Liu and Dylan A. Shell

Department of Computer Science and Engineering

Texas A&M University

College Station, Texas, USA

Email: {lantao,dshell}@cse.tamu.edu

Abstract

This paper introduces an approach that scales assignment algorithms

to large numbers of robots and tasks. It is especially suitable for dy-

namic task allocations since both task locality and sparsity can be effec-

tively exploited. We observe that an assignment can be computed through

coarsening and partitioning operations on the standard utility matrix via

a set of mature partitioning techniques and programs. The algorithm

mixes centralized and decentralized approaches dynamically at different

scales to produce a fast, robust method that is accurate and scalable, and

reduces both the global communication and unnecessary repeated com-

putation. An allocation results by operating on each partition: either the

steps are repeated recursively to refine the generalized assignment, or each

sub-problem may be solved by an existing algorithm. The results suggest

that only a minor sacrifice in solution quality is needed for significant

gains in efficiency. The algorithm is validated using extensive simulation

experiments and the results show advantages over the traditional optimal

assignment algorithms.

Keywords: assignment partitioning, multi-robot task allocation, dynamic

assignment.

1 INTRODUCTION

Task-allocation is a successful paradigm for coordinating multiple robots in
a task-domain independent way. In its most straightforward form, each robot
within the multi-robot team quantifies their expected individual performance
on the pending tasks (their utilities). The robots then share this information
and collectively allocate tasks among themselves so as to maximize estimated
team performance, either directly or indirectly. It is not uncommon to perform
the task assignment step repeatedly to ensure that the multi-robot system acts
fluidly in a dynamic environment, deals with robot failures, takes newly injected
tasks into account, and adapts as utility estimates are revised.

This paper is concerned with large-scale online assignment problems involv-
ing hundreds of robots and tasks. When one considers repeated allocation for
large problems, it can be costly to use the näıve approach of recomputing by
globally aggregating the latest utility estimates, and then performing a new al-
location from scratch. Generally speaking, those steps are unavoidable when
no information about the task structure is known. However, both spatial and
temporal locality mean that after analyzing the utility matrix from a first task-
assignment problem, subsequent reassignments—which typically involve quite
similar inputs—may be greatly ameliorated. The approach we describe achieves
its efficiency through parallelization of large allocation calculations and, addi-
tionally, communication costs are lessened by confining messages to subsets of
the team.

The algorithm we introduce is based on the observation that the partitioning
techniques for balancing matrices computations across multiple processors can
not only be applied to distribute the computation loads but, in fact, application
of these techniques may actually be directly used to compute an assignment
problem. The approach computes the assignment solution in two stages. The
first step involves a form of “abstraction” through which a coarse generalized as-
signment is done in which whole sets of robots are paired with sets of tasks. The
associations between these sets are used to partition and distribute the assign-
ment problems to smaller independent sub-assignments. Merging and splitting
of the distributed sub-assignment problems allows online task commitment to
be dynamic in response to changes in utility values. The partitioning and dis-
tribution steps essentially distill the global problem by eliminating insignificant
utility information, reducing total computing and communication costs. In ad-
dition, the algorithm can permit one to tune the partitioning degree (or number
of partitions) so that the level of decentralization is adjustable but can span
the spectrum from fully centralized to entirely distributed. By comparing with
centralized and decentralized algorithms, we show that this divide-and-conquer
strategy possesses several advantages and that the new formulation as a parti-
tioning problem has potential for further improvement via future research.

The contributions of this work include:
• Identification of a partitioning formulation for the assignment problem using

hypergraph (and related matrix) representations, which enable a top-down,
multi-level allocation of tasks.

• Demonstration that this leads to a new, naturally distributed solution in
which centralized and decentralized aspects can be mixed and combined (up
to any level of recursion for large scale problems).

• Detailed evaluation and exploitation of the sparseness properties of utility
matrices.

• Introduction and solution of what we term the “dynamic” optimal assign-
ment problem where random changes occur in elements of the utility matrix.
The solution we describe naturally fits our hierarchical partitioning scheme

by ensuring that reallocation need only be propagated upwards to levels ap-
propriate for adjustment of the assignment.

2 RELATED WORK

As described in Gerkey and Matarić [2004], task-allocation mechanisms are a
specialized set of deliberative coordination approaches which focus on organizing
and managing the performance of work performed by members of a multi-robot
team. Several of these mechanisms were developed in conjunction with, and
as foundational elements of, pioneering multi-robot software architectures. The
focus of this paper is on the most widely studied (and most widely applied)
variant of this problem, which Gerkey and Matarić term the Single-Robot-Tasks,
Single-Task-Robots, involving an Instantaneous Assignment (ST-SR-IA).

Many variations and generalizations of the ST-SR-IA assignment problem
have been developed: these include cases in which coalitions of robots must
be formed [Berhault et al., 2003], fine-grained sharing of resources [Tang and
Parker, 2007], incremental assignment [Toroslu and Üçoluk, 2007], and sensitiv-
ity analysis [Liu and Shell, 2011]. Task-assignment problems of a similar under-
lying combinatorial nature have also been tackled from a hybrid systems per-
spective (e.g., role assignment with preemption [Ji et al., 2006], and potential-
field hybrid controllers with relaxed mutual exclusion constraints [Zavlanos and
Pappas, 2008]). An important recent result is that of Smith and Bullo [2009],
who studied a class of problems in which assigned robots must remain at tar-
gets indefinitely, but for which important performance bounds under different
environmental models could be identified.

A variety of algorithms exist for solving these problems, we distinguish two
general classes: Centralized approaches involve a single decision-making agent
that, after obtaining information about expected task utilities from the other
robots, computes an assignment which it then broadcasts to the team. Most
implementations of the primal-dual methods and linear programming-based ap-
proaches fall into this family, as do some auction protocols involving an auc-
tioneer. Numerous examples are analyzed in Gerkey and Matarić [2004] and
Dias et al. [2006]. Decentralized approaches do not distribute the utility infor-
mation globally, instead individual agents may have little or no dependence
on other robots. Some algebraic, greedy, market-based, and swarm-intelligence
algorithms fall into this category (see e.g., Dias et al. [2006], Kalra and Marti-
noli [2006], Kloder and Hutchinson [2006]). The taxonomy of Cao et al. [1997]
further divides the decentralized framework into two types: hierarchical or dis-
tributed. Within hierarchical architectures, a certain degree of local central-
ization exists, while in distributed systems the robots are equal with respect to
control, lacking any degree of centralization. For practical assignment strategies
in distributed multi-robot systems, both Cao et al. [1997] and Dias et al. [2006]
note that there are rarely completely centralized algorithms or purely distributed
decentralized schemes, rather most methods are mixtures involving centraliza-
tion and decentralization elements.

Centralized and decentralized architectures have advantages as well as their
respective disadvantages. Fortunately they can be seen as complementary in
some ways. Centralized approaches are relatively easy to implement and are
frequently capable of computing an optimal result given a set of global infor-
mation. Traditional centralized strategies require a central leader that is re-
sponsible for collecting, processing, and broadcasting the global information.
Consequently, the communication complexity and computation complexity for
the central leader can be a limiting factor that directly impacts the efficiency
of the whole system. Additionally, this may result in a single point of fail-
ure. Decentralized methods, in contrast, achieve robustness to individual fail-
ure and may gain a performance advantage through parallel computation. Their
biggest drawback lies in the realm of solution quality, especially when the sys-
tem is highly decentralized so that significant information is never propagated
throughout the system.

Although much research that is relevant to task-allocation has emerged in
the last two decades, most work with a decentralized focus has a fundamentally
static view: the structures which describe the degree of “local centralization”
are fixed during the assignment process. Typically groups that operate tightly
together are directly within the sensing/communication range (e.g., Zavlanos
et al. [2008], Lerman et al. [2006]), or are partitions or clusters in which roles
and hierarchical level are predetermined (e.g., Smith and Bullo [2009], Choi et
al. [2009]). Some notable exceptions, which have a degree of philosophical simi-
larity to the present work, are: (1.) Zlot and Stentz [2003] built a task tree after
a task abstraction step, permitting a flexible assignment to be made at different
levels; (2.) Simmons et al. [2002] extended the traditional three-layered architec-
ture such that each layer can communicate directly with its peer layers on other
robots, which allows the distributed robots to flexibly interact at multiple lev-
els of abstraction with minimal communication overhead; (3.) The most recent
work of Melo and Veloso [2011] also investigated the locality and interaction-
sparsity, and showed that the local interaction of a decentralized multi-agent
system can simplify the global coordination by introducing a decision-theoretic
model called Dec-SIMDPs.

To date, the majority of decentralized/distributed assignment algorithms
for multi-robot systems employ auction strategies (cf. Zavlanos et al. [2008],
Michael et al. [2008], Goldberg et al. [2003], Dias et al. [2006], Bertsekas and
Castanon [1991], Choi et al. [2009]). However, all these works do not decompose
sub-assignments into independent partitions since they require either a complete
communication network all the time or relaying capability among the distant
robots [Zavlanos et al., 2008; Choi et al., 2009]. We are unaware of work that has
modified the underlying auction mechanism in order to maximize flexibility of
the assignment structure through dynamic merging and splitting of independent
sub-assignments.

Different from above schemes, the approach we describe introduces a means
for adapting to dynamic task changes within a hierarchical framework. The
algorithm places an emphasis on a hierarchical decomposition derived from an
initial analysis of the task structure, but maintains fluidity so that changes

trigger readjustment and balancing operations are as localized as possible.

3 PROBLEM DESCRIPTION

Multi-robot task assignment A consists a set of robots R and a set of tasks
T and can be denoted as A = 〈R, T 〉. In the ST-SR-IA assignment problem,
following a given performance metric P : R × T → R

+, the objective is to find
an assignment solution f : R → T such that each robot ri ∈ R is assigned to a
unique task tj ∈ T , ri 7→ tj (i, j are indices of robots and tasks, respectively)
so that either all robots are assigned or all tasks are allocated. In our work,
|R| 6= |T |, the number of robots may differ from the number of tasks. The
assignment of a robot to a task ri 7→ tj can be alternatively regarded as an
allocation of a task to a robot tj 7→ ri. Symmetry of injection and surjection,
means one may assume |R| ≤ |T | without loss of generality, i.e., we must ensure
every robot will be assigned (injective but potentially not surjective). The multi-
robot task assignment problem is to find a solution f such that the performance
∑

r∈R P (r, f(r)) is maximized.
Our desire is to partition the original assignment A into a serial of sub-

assignments A1, A2, · · · , AK satisfying:

Ak = 〈Rk, Tk〉, Rk ⊆ R, Tk ⊆ T,

K
⋃

k=1

Rk = R, and
K
⋃

k=1

Tk = T,

Rk ∩Rl = ∅, and Tk ∩ Tl = ∅, k, l ∈ [1,K], k 6= l.

(1)

and all robots r
(k)†
i ∈ Rk , will be only assigned to tasks t

(k)
j ∈ Tk in the

same partition. Therefore, after partitioning, we have fk : Rk → Tk, and the
sub-assignments become independent and can be processed and distributed as
fresh assignment problems. Finally, we want the aggregated performance of
sub-assignments to have a small sacrifice of the original optimal performance.
i.e.,

∑

r∈R

P (r, f(r)) ≤ (1 + ǫ)

K
∑

k=1

∑

r(k)∈Rk

P (r(k), fk(r
(k))) (2)

for some small ǫ value.
In order to better represent the robot–task relationship and the associated

performance, it is instructive to consider both the matrix model and graph
models, these are discussed in the following subsections.

3.1 Sparse Matrix Model

Following convention, the matrix describing estimates of robot performance
when associated with a particular task is called the utility matrix : entry uij

† Superscript (k) denotes that this variable subjects to the k-th partition/sub-assignment.
It applies to other variables throughout the paper.

represents the expected utility (or reward, or benefit) of having robot ri perform
task tj . Since matrix transposition does not fundamentally change the problem,
without loss of generality, we will consider utility matrices of size m×n (m ≤ n).
The linear sum assignment problem is to find the assignment that maximizes
the sum of the accompanying utilities and, in our context, thereby maximizing
the robot team’s expected performance.

We use the term shape (m/n) to denote a matrix’s height over width, and use
system size (m+n) to describe how large the system is, not to be confused with
the matrix size (m× n). The matrix need not have every entry filled: expected
utilities that are so small as to be unlikely to be part of the final assignment may
be omitted—which we term void entries—producing a so-called sparse matrix.
Such matrices enable considerable computational and communication savings,
for example, when produced by having each robot transmit only non-negligible
values during the initial utility aggregation procedure, or by a pre-processing
step before computing the assignment.

A sparse utility matrix is particularly intuitive if the utility computation is
dominated by factors that are a function of distance, which is often the case
for mobile robots. When range limitations of physical sensors mean that data
for utility estimation is only collected with acceptable accuracy for “nearby”
tasks (cf. Kalra and Martinoli [2006]), then the sparsity of the utility matrix
follows from the relative positions of robots and tasks. As demonstrated by the
results in Section 6.1, spatial calculations mean that nearby information often
contributes most significantly to the final task allocation solution. This is a
useful property because estimates of utilities for far away tasks are also likely to
be poorer than those nearby. Such distance effects may also naturally correlate
with communication ability; in such cases partitioning (as described below) will
not only reduce the total number of agent-to-agent messages but is also likely
to localize them.

3.2 Hypergraph Model

It is well-known that an assignment can be described with a bipartite graph
in seeking the optimal solution. Another graph representation that is useful and
related to this work is called hypergraph.

Definition 1 A hypergraph H is denoted by H = (V, E) where V is a set of
nodes (the counterpart of vertices), and E is a set of non-empty subsets of V
called hyperedges. A hyperedge generalizes the notion of an edge in standard
graphs, and instead connects an arbitrary set of nodes.

The hypergraph representation is superior to a bipartite graph when consid-
ering assignment partitions because it has an interpretation in which the process
can be intuitively understood as a clustering procedure. Viewing the nodes of
the hypergraph as robots and the hyperedges as tasks, then the hypergraph
forms a network in which properties of the utilities are reflected topologically.
This is illustrated in Figure 1 where each hyperedge links to multiple nodes
(robots) and is weighted by the associated utility.

Graphs or matrices are isomorphic representations capturing the same un-
derlying assignment problem in our work. Partitioning an assignment problem
can be seen either in the graph formulation (bipartite graph or hypergraph), or
directly in the utility matrix. However the different formulations lead to different
interpretations for the solution finding process: the bipartite graph formulation
involves searching for the minimal (weighted) edge cuts among sub-bipartite
graphs (not necessarily complete graph with all vertex pairs edge-connected),
while the hypergraph formulation involves shrinking hyperedges into disjoint
singletons of maximal weight. We believe the partitioning approach introduced
in this paper is most naturally viewed in this hypergraph form.

4 BACKGROUND: PARTITIONING

Graph partitioning is a general computational problem concerned with group-
ing vertices or nodes together so as to minimize the vertex/edge cuts between
these groups. Many research areas benefit from graph partitioning, most rel-
evant to this work is research on high performance computing. Graph par-
titioning is known to be NP-complete and consequently many heuristics have
been proposed [Garey et al., 1974]. Spectral partitioning methods and their vari-
ants (e.g. Dhillon [2001], Pothen et al. [1990], Hendrickson and Leland [1993])
have been used to partition a wide variety of graphs. With specialized strate-
gies, particular properties (e.g., imbalance among partitions) can be controlled.
The Kernighan-Lin/Fiduccia-Mattheyses heuristic [Kernighan and Lin, 1970;
Fiduccia and Mattheyse, 1982] performs well in refining partitions and con-
verges quickly when a good initial partitioning can be provided. Geometric
partitioning methods (e.g., Miller et al. [1993] Gilbert et al. [1995]) are generally
the fastest available but require multiple trials and the partitioning result is
not deterministic. The widely used—and most relevant to this work—multi-
level partitioning heuristic [Karypis and Kumar, 1998; Hendrickson and Leland,
1993] combines different heuristics in its three principle phases: coarsening, ini-
tial partitioning and uncoarsening.

Graph partitioning results in a pattern in the corresponding matrix represen-
tation: non-void entries of the sparse matrix are gathered into non-overlapping
blocks on the diagonal by performing row/column swaps, such that the matrix
is “partitioned” into clusters of void or non-void entries. This has been exten-
sively researched for high performance computing applications [?; Kolda, 1998;
Ümit V. Çatalyürek and Aykanat, 1999; Aykanat et al., 2002; Arafeh et al.,
2008] where non-diagonal entries represent costly communications between pro-
cessors. Total running time is reduced when (parallel) processor loads are bal-
anced, i.e., the diagonalized blocks are partitions of equal sizes. Communication
volume is minimized when non-diagonal blocks have as few non-void entries as
possible [Hendrickson et al., 1998].

In this paper, the running time for the assignment problem is reduced by
introducing parallelism analogous to the matrix partitioning treatment used
more broadly in high performance computing. Size-balanced and independent

(a) (b)

Figure 1: (a) Partitioned sparse matrix (each shaded cell represents a non-
void utility, and all non-void utilities are unit-weighted); (b) The corresponding
hypergraph representation (circles are nodes and squares denote hyperedges).

diagonal blocks of the partitioned utility matrix represent sub-problems which
can be distributed with minimal overhead. We distribute the assignment prob-
lem by partitioning the pre-processed utility matrix, which is accomplished by
partitioning the equivalent hypergraph. A partitioning example showing the
equivalence of the utility matrix and hypergraph representations is shown in
Figure 1. The utility matrix is sparse since it has been processed so as to re-
tain only a subset of the utilities that are most important, and the non-void
entries are equally weighted (unit-weighted). As described below, this reduces
the remaining subset to an equal preference set somewhat analogous to a greedy
choice of a sub-set of tasks.

5 THE TWO-STAGE PARTITIONING AND

DISTRIBUTION STRATEGY

The goal of our work is to partition and distribute the centralized assign-
ment problem in order to address problems involving large numbers of robots
and tasks, and to maximize responsiveness to task dynamics. The algorithm
we describe arose by observing that changing row (robots) or column (task) or-
dering does not alter the outcome of the classical optimal assignment problem
treatment (e.g., [Kuhn, 1955]) for the multi-robot task allocation. The problem

can be formalized in an integer linear programming form:

Maximize
m
∑

i=1

n
∑

j=1

uijxij

s.t.

n
∑

j=1

xij = 1 i = 1, ...,m,

m
∑

i=1

xij ≤ 1 j = 1, ..., n,

xij = 0 or 1.

(3)

where m ≤ n in this case (every robot must be assigned, but some tasks may
be redundant).

The computed assignment is a matrix X of entries xij which are zeros and
ones. When m = n it is most easy to see that this is a permutation matrix:
post-multiplying the utility matrix by XT reorders the tasks and the value of the
optimal assignment is merely the trace of the result. Thus, a matrix reordering
which maximizes mass along the diagonal represents the optimal assignment.
This view is useful because it leads to the interpretation of an incremental
assignment process as producing a sequence of increasingly block-diagonalized
utility matrices that each represent selection of a subset of robots as candidates
for a subset of tasks.

Proceeding along these lines, our approach uses a two-stage assignment strat-
egy. In the first stage, aggregated assignment data are partitioned into K sub-
assignment problems, in which the robot-task pairs are strongly “connected”
and are likely to be assigned within the same partition. In the second stage,
the K sub-assignments are regarded as K new independent assignment prob-
lems and the responsibility for solving each sub-problem is delegated to robots
within the respective partitions. This permits the assignment to be computed
in a distributed manner and in parallel. The approach is a multi-level strat-
egy because each of the sub-problems can either be solved by applying the same
procedure recursively, or by directly employing a classical assignment algorithm.

5.1 Matrix Sparsity Control

Our implementation employs a pre-processing step in order to control the
degree of sparsity in the utility matrix: a sparsity parameter ρ ∈ (0, 1] is used
by a single robot which, after it has aggregated all available utility information,
removes the (1−ρ)·n smallest elements from each row. (An alternative method is
to remove those entries less than some threshold, but this requires that utilities
have an absolute scale rather than a relative interpretation.) This filtering
retains only the highest weighted entries, which are most likely to contribute to
the assignment solution and produces a sparse matrix consistent with the format
required for matrix factorization. Since negligible utilities are not needed by the
algorithm, the utility aggregation can be simplified to only gather the highest

weighted values. Significant computation can also be avoided in calculating
utilities, for example, if an admissible heuristic [Russell and Norvig, 2009] is
employed during planning, a threshold permits early termination for especially
costly tasks.

The removal of any utility values may adversely affect the quality of the
final assignment solution: indeed it is possible to contrive examples in which
arbitrarily small utility values are necessary to produce the optimal assignment.
In practice (and as demonstrated in Section 6) the utility matrices that arise in
actual robot task-allocation problems permit a large proportion of the utility
values to be discarded before a significant reduction in solution quality occurs.
By manipulating ρ the quality-vs.-efficiency trade-off may be tuned to suit user
needs; we believe this to be more representative of our physical robots than
directly relating task sparsity to some fixed range (e.g., based on communication
radius, although cf. [Smith and Bullo, 2009] for such a treatment).

5.2 Determining the Sparsity Parameter ρ

We evaluate the solutions found through a decentralized assignment by com-
paring it with the global optimum, and quantify the quality of the solution us-
ing a quality parameter q ∈ [0%, 100%], e.g., a solution with q = 50% means
it reaches 50% of the optimum for a maximization problem. Higher solution
quality, in general, limits the degree to which a matrix may be filtered, i.e.,
requiring a larger ρ. We use ρ(q) to denote the threshold sparsity to reach a
given quality q. Moreover, for a fixed q, ρ(q) varies with the size of a system,
as well as the shape of the matrix. However, our empirical results (presented in
Section 6) show that, for a given matrix with known shape, even if the system
size varies, few utilities in each row contribute most to the optimum and the
number is approximately constant. This observation is very useful especially for
the square matrix case, which is the scenario most described in the literature.
For non-square matrices of size m× n, the rule still holds and thus ρ(q) can be
estimated by running calibration experiments off-line, which is also discussed
later.

5.3 Determining the Partitioning Number K

The degree to which the system is partitioned and the sizes of those partitions
will affect the system’s performance. Since balanced partitions are preferred,
we can expect the final partitioned diagonal blocks to have similar sizes and be
similar in shape. Thus, the question becomes one of determining the partitioning
number K. Or, more generally, assessing a range of values for K which have
attractive performance.

Complete utility matrix: If the utilities from all robot–task pairs are
available or inexpensive to obtain, we will be able to obtain a complete
dense utility matrix. Once ρ is determined, each row will have ρn non-
void utilities after filtering. In order to cluster all non-void utilities into

the diagonal blocks and leave the off-diagonal blocks containing as few
non-void utilities as possible, one must ensure that ρn ≤ n/K, i.e.,

1 ≤ K ≤ n

ρn
=

1

ρ
. (4)

Partial utility matrix: There are occasions when all utilities cannot be
obtained directly, e.g., some robots may be unaware of some of the tasks,
or may be unable to compute utilities with acceptable accuracy for all
the tasks. For the rows that contain a number greater than ρn non-void
entries, the filtering procedure will operate as described in the sparsity
control case, otherwise, all existing entries are retained. Let hi denote
the number of non-void utilities in row i (for the i-th robot), then we can
approximately estimate the range of K via following formula:

1 ≤ K ≤ mn
∑m

i=1

(

hiI{hi≤ρn} + ρnI{hi>ρn}

) , (5)

where I is an indicator variable that is equal to 1 if the condition is true
and 0 otherwise.

5.4 Matrix Partitioning and Distribution

As in parallel computing applications, balanced partitions are preferred so
that the computational workload may be equalized. The resultantK-partitioned
matrix forms blocks containing approximatelym/K rows and n/K columns, and
the non-void blocks finally lie on the diagonal after simple re-ordering. Let U
and Bk (k ∈ [1,K]) denote the sparse utility matrix and the partitioned diagonal
blocks, then ideally we have U = diag(B1, B2, · · · , BK) where Bk has dimension

m(k) × n(k), and
∑K

k=1 m
(k) = m,

∑K
k=1 n

(k) = n. Thus

n(k)
∑

j(k)=1

xi(k)j(k) =
n
∑

j=1

xi(k)j = 1 ∀k, i(k) = 1, ...,m(k),

m(k)
∑

i(k)=1

xi(k)j(k) =
m
∑

i=1

xij(k) ≤ 1 ∀k, j(k) = 1, ..., n(k),

(6)

where xi(k)j(k) , xi(k)j and xij(k) are the binary variables defined analogously
to xij but relevant to diagonal block Bk. This shows that the assignment so-
lutions from partitioned blocks do not violate the assignment constraints and
collectively form a global assignment solution.

We call the 1st-level partitioned matrix the assignment table. In the assign-
ment table, m rows are partitioned into K belts (see Figure 2(a)), with each belt
having K − 1 void blocks and a single non-void diagonal block. In each parti-
tion, we randomly pick a robot as the sub-leader, i.e., there are K sub-leaders
in total. The initial assignment table is distributed to the K sub-leaders, and

the sub-leaders are responsible for solving the independent assignment problems
in their respective partitions. Figure 2(a) illustrates the assignment table with
three belts that are distributed to three sub-leaders (SL1, SL2 and SL3) within
their respective partitions. Note that although each sub-leader obtains a copy of
the global assignment table, it may only manipulate the belt to which it belongs.
However, the entire table provides global observations of the whole assignment
problem, and a sub-leader combines it local observations with global informa-
tion to determine whether merging or splitting of independent sub-assignments
is required and which sub-leader(s) it should contact for such operations.

5.5 Dynamic Assignment

An initial partitioning can be of significant advantage in solving the as-
signment problem when task dynamics mean that reassignments are frequently
necessary. This is quite common in online assignment problems. Once an initial
partitioning has been constructed, it is not necessary to do the whole partition-
ing procedure for each reassignment query but, instead, one may localize the
impact of changes in utility values. Computation should focus only on address-
ing those partitions which have changed significantly in a way that undermines
the acceptability of the initial partitioning. Partitions operate in an entirely
distributed fashion and continue to be considered independent of each other un-
til sufficient utility values have “diffused” to entries outside the block-diagonal.
Those values reflect tasks that might be currently assigned to robots in other
partitions. When this occurs, a repartitioning is called for, but it need only be
repeated among those interacting partitions.

To assess whether repartitioning is necessary, the sub-leaders monitor the
sparsity of associated utility blocks in their respective partitioned belts. As
mentioned in Section 5.2, only a few utilities contribute to the overall score,
and this is sensitive only to the matrix shape but not the system size. Since
the partitions are generally balanced, the resultant blocks have shape similar to
original matrix, and for a block B with row size mB and column size nB , we
have

nB · ρB(q) = n · ρ(q) ⇒ ρB(q) =
n

nB

ρ(q), (7)

where ρB(q) is the threshold we use in block B to obtain an online assignment
quality greater than or equal to the specified quality q. During a dynamic
assignment, the utility values may change and the observed sparsity for a specific
block is likely to vary too. Observed sparsity is measured by

ρ̂B =
1

mBnB

mB
∑

i=1

nB
∑

j=1

I{vij>0}, (8)

where vij is the value of entry (i, j) in block B.
We compare the observed sparsity ρ̂B of a given diagonal block B with the

threshold ρB(q). If ρ̂B < ρB(q), it means that the robots or tasks are less suited
to the current partition than they once were and are probably candidates for

(a)

(b)

Figure 2: (a) An assignment table with three partitioned diagonal blocks is
distributed to three sub-leaders (SL1–3). The red rectangles illustrate the belts
that are the responsibilities of respective sub-leaders; (b) An assignment table
with interrelated blocks highlighted in red. After row and column permutations,
interrelated blocks are “clustered” into an interrelated submatrix which can be
repartitioned again.

other partitions. Put another way, the association between some agent–task
pairs in this partition has weakened and the quality of this sub-assignment
has deteriorated. Simultaneously, we can find some off-diagonal block(s) that
have increased non-void entries. The blocks involved in such an interaction are
the interrelated blocks, illustrated with the highlighted outline in the left of
Figure 2(b). Interrelated blocks are blocks which:

1. satisfy ρ̂B < ρB(q) if they are diagonal blocks;

2. are non-diagonal blocks that reside in the same rows as the diffusing diag-
onal blocks, and also possess the largest density increment in their rows;

3. are complementary blocks to those from 1 and 2, such that all of them
eventually form a rectangle with original diagonal blocks still on the di-
agonal.

If we treat each block as an entry, then the interrelated blocks can “merge” to
an inner interrelated submatrix embedded in the utility matrix as illustrated on
the right of Figure 2(b). This is because diagonal blocks can be re-positioned
with a few symmetric row and column permutations.

Once repartitioning is triggered, the sub-leaders of the interrelated blocks
only communicate with each other and carry out the repartitioning work follow-
ing our proposed 2-stage assignment procedure. If no repartitioning is required,
the sub-leaders in independent partitions simply compute the assignment solu-
tion either by using a centralized algorithm, or through recursive application of
the procedure to sub-sub-leaders, etc.

Finally, to guarantee the accuracy of global assignment, a fresh global new
partitioning should be carried out after some period of time. This is because the
extracted coarse features of initial global assignment can gradually lose accuracy
as many iterations of interrelated blocks coalesce and are repartitioned. We
trigger “restarts” by counting the number of repartition operations. If any of the
distributed sub-leaders’ counters reaches a predefined threshold number Nr, this
sub-leader automatically takes the role of the global leader and re-aggregates
global information as well as partitioning the assignment from scratch. The
threshold Nr is an empirical value depending on the frequency of changes within
the system, but it could also be updated dynamically during an online learning
process.

5.6 Assignment Partitioning and Distribution Algorithm

Details from the previous subsections are captured in Algorithm 1. In the
pseudo-code lines 1–4 describe the matrix pre-processing, partitioning, and dis-
tribution by a global leader. The remaining lines are executed by sub-leaders in
a distributed fashion.

Lines 13–16 and lines 17–21 describe the merging and splitting of sub-
assignments, which is like a dynamic divide-and-conquer strategy for manip-
ulating the local centralization and local decentralization. Lines 17–21 can also

Algorithm 1 Assignment Partitioning and Distribution

Input: utility matrix U (size m×n), assignment quality q, repartitioning max-
imal number Nr

Output: decentralized assignment solution

{/* global leader do following four steps */};
1: determine sparsity parameter ρ(q) and partitioning number K;
2: filter out and keep ρ(q) · n largest utilities per row;
3: make K partitions, obtain assignment table with diag(B1, B2 · · ·BK);
4: distribute assignment table to each partition;

{/* sub-leaders (SL) do “for each” below in distributed fashion*/};
5: for each partition (associated with B) parallel do

6: if SL counts #repartitions > Nr then

7: SL becomes global leader;
8: goto 1: ;
9: end if

10: determine ρB(q);
11: for every update (at fixed frequency) do
12: compute observed ρ̂B ;
13: if ρ̂B < ρB(q) then
14: locate and communicate among interrelated blocks B

′

1, B
′

2, · · ·B
′

l ;

15: merge interrelated blocks B = B ∪ {B′

1, B
′

2, · · ·B
′

l};
16: end if

17: if size(B) > size(U)/K then

18: repartition B into unit blocks;
19: distribute the new partitions to new selected sub-leaders;
20: update assignment table and #repartitions;
21: end if

22: implement reassignment locally using either Algorithm 1 recursively or
by employing a centralized allocation mechanism.

23: end for

24: end for

be modified using recursive mechanism of Algorithm 1 itself. In addition, the
partitioning number K determines the hierarchical level of decentralization in
the spectrum. Two extreme cases are: if K = 1, the approach is completely
centralized; if K = m, each robot forms an independent partition so that the
structure is fully distributed.

However, the description of the algorithm omits two details which must
be considered for an implementation: (1.) the choice of partitioning software;
(2.) the criteria for selecting whether to recurse on a sub-case or solve using
centralized allocation mechanism. These are discussed next.

As emphasized in Section 4, a significant body of work exists to address
the partitioning problem. We have tested ∼10 popular graph/matrix parti-
tioning tools that are available on the web, and found that hMeTis [Karypis
and Kumar, 1998] and PaToH [Ümit V. Çatalyürek and Aykanat, 1999] per-
form the best. (Actually hMeTis is slightly faster than PaToH). It is worth not-
ing that our proposed assignment strategy itself—along with the partitioning
implementation—includes aspects of the multi-level framework. The first stage
of assignment, which yields K partitions, is a coarsening phase that collapses
the strongly connected agent-task pairs into super nodes and thereby capturing
essential features of the global information. The initial partitioning phase is
trivial in our algorithm since the particular diagonal blocks are non-overlapped,
so the partitions are independent and already identified. The second stage of our
algorithm, which computes the assignment solution for each robot, corresponds
to an uncoarsening phase that refines the final results. As already pointed out,
this multi-level partitioning strategy has been broadly used in many partitioning
algorithms and much software, and the advantages of this framework are dis-
cussed by several authors [Karypis and Kumar, 1998; Hendrickson et al., 1998;
Papa and Markov, 2007].

In our implementation, we opted to have a single partitioning phase with
the second stage operation that always employed a centralized allocation algo-
rithm. There are two distinct reasons: (i.) some partitioning strategies/tools
(e.g., the hMeTis and PaToH) are already designed using a bisection mecha-
nism, and these programs utilize such bisection to recursively partition a graph
into smaller pieces until they reach the designated size; (ii.) our implementation
was primarily used for evaluation purposes; a single partitioning phase allows
one to assess the effectiveness of the distributed computation most easily. For
extremely large problem instances deep recursion may be the only viable so-
lution. The primary design criteria for whether recursive subdivision is worth
conducting is the cost of the management that is required (keeping track of
sub-sub-leading agents, for example), and how naturally the problem instance
can be distributed. This latter property is partially a function of the matrix
block’s sparsity, density, and the interrelationships between entries. Moreover,
since the utility matrix does not necessarily need to be square, the allocation of
more than one task to each robot also works with this multi-level partitioning
and distribution framework by simply treating the ultimate partitioned units as
new assignment problems.

6 EXPERIMENTS

We simulated our algorithm by considering the problem of dispatching a
group of robots to a set of destinations. This problem and variations on it
has been employed for evaluating allocation strategies in the literature and
forms a standard test problem (see, for example, Berhault et al. [2003], Liu
and Shell [2011]). In order to integrate several popular open-source partitioning
tools, we wrote a custom simulator in C++ and ran it in a GNU/Linux environ-
ment. Homogeneous robots begin from random positions within a 100m×100m
square; they are provided with their position information and are given target
locations (randomly positioned in the environment), as an example shows in
Figure 3(a). The objective is to minimize the distance travelled by all of the
robots. Dynamic scenarios are modelled by associating different drift speeds
with both robots and tasks. The corresponding 2D environment for dispatching
the large-scale multi-robot task allocation problems is shown in Figure 3(b).

To adapt for our current optimal assignment software, we transformed the
minimization problem to maximization problem by converting d to −d, where
d is the real distance between a robot-task pair. We employed hMeTis [Karypis
and Kumar, 1998]. In order to obtain blocks, we transpose the row-wise parti-
tioned matrix and do a second partitioning on it. The diagonal block matrix is
then obtained by simple block diagonalization.

6.1 Sparsity Analysis

In this work we filter out small utilities that are likely to be dominated; first
we need to investigate the effect that discarding this information has on the final
assignment quality. We define metric ηx:y = x

y
as a measure of the practical

performance of x over y. In this experiment, the quality q of an assignment
solution is therefore equivalent to ηo:f (o: optimum from original dense matrix;
f:optimum from filtered sparse matrix). We investigated the matrices in different
shapes (i.e., manipulate m/n), and for each shape, we tested with different sizes
(i.e., control m + n). For each matrix of certain shape and size, the quality
q under a serial of ρ ∈ (0, 1] are observed. Figure 4(a) and 4(b) show the
results of square matrices and rectangular matrices in fixed shapes. We are
most interested in the sparsity threshold ρ(q) that guarantees certain solution
quality q. One interesting result is that, for each robot, although ρ(q) varies
along with the change of the number of tasks n, the product of them tends to
be a constant number N(q), i.e., N(q) = nρ(q). In other words, the utility
values that contribute most to the optimum assignment is only sensitive to
the matrix shape, but not the system size. For instance, in Figure 4(a), when
the matrix shape is fixed (m/n = 1 in this case), no matter what the system
size is, the number of utilities that guarantees 95% solution accuracy is around
10, meaning that only ∼10 nearest tasks for each robot contribute significantly
in determining the optimum. Comparing Figure 4(b) with 4(a) we see that
the more slender the matrix (with greater tasks than robots), the smaller the
N(q) that is permissible. Once N(q) is observed, ρ(q) can be approximated via

(a) (b)

(c) (d)

Figure 3: (a) An assignment problem to dispatch robots to nearest task loca-
tions; (b) Centralized assignment result in a 2D environment (circles are robots
and square dots are tasks locations, lines between the robots and tasks represent
the assignment); (c) Distributed assignment solution based on the partitioning
results (circled areas denote partitions); (d) Block matrix of the corresponding
partitions.

(a) (b)

Figure 4: Sparsity analysis showing that significant proportions of the task
matrix can be discarded, with little deterioration of assignment quality.

ρ(q) ≈ N(q)/n.

6.2 Assignment Partitioning for the Static Case

We have outlined in Section 5, the sparse matrix is converted into the format
of hypergraph, and fed to hMeTiS. It produces a block matrix that provides
information on the correspondence of robots and tasks in a way that causes
them to be partitioned into clusters. An arbitrary assignment with partitioning
results is shown in Figure 3(c) and 3(d). In Figure 3(c), there are 5 partitions
obtained from the 5 blocks on the diagonal in the partitioned matrix, illustrated
in Figure 3(d). Robots and tasks in the same partitions/blocks are considered
as new assignment problems independent of others.

The second level assignment is executed inside each partition/block. In our
work, we use the Hungarian algorithm [Kuhn, 1955] to solve the second level
partitioned assignments. Note that it is possible that even voided (removed)
entries will be assigned, and in the same row/column there could be many
voided entries that have zero utility. The problem lies in that the assigned
entry is not the smallest in reality (the real utility before being removed), which
may deteriorate the optima considerably when ρ is too small. To solve this,
we check such assigned pairs to avoid treating them as random allocations:
if such assignments are found to be invalid, we re-adjust and thereby improve
these results by greedily reassigning these robots to their nearest available (non-
voided) tasks.

We have run and compared our method with two popular assignment algo-
rithms: Hungarian algorithm and a greedy algorithm. The Hungarian algorithm
is a deterministic centralized algorithm that always yields the global optimum,
with state-of-art time complexity O(n3), hence we use it as a gold standard for
comparison.

(a) (b)

(c)

Figure 5: (a) ηp:h vs ρ and #robots : #tasks; (b)ηg:h vs ρ and #robots : #tasks;
(c) Comparisons of assignment qualities, blue bars represent ηp:h and maroon
bars denote ηg:h (horizontal-axis:robots#: tasks#; vertical-axis: η).

In this work, entirely decentralized variants of the greedy algorithm∗ oper-
ate in which robots independently evaluate the available tasks and select the
maximal utility one for its assignment. At first, each robot greedily chooses the
best available task for itself. If a task is simultaneously selected by more than
one robot, one-round of communication among these robots are carried out to
decide the winner for this task, and this task is marked unavailable for other
robots. The distributed greedy algorithm is included because it provides insight
into the level of quality that several practitioners have been willing to sacrifice
(see Gerkey and Matarić [2004] for a detailed discussion).

Using the performance metric η as defined previously, we tested ηp:h and
ηg:h (p, g, h denote our partitioning algorithm, greedy algorithm, and Hungarian
algorithm, respectively) under different sparsity and matrix shapes for a large-
scale multi-robot system of sizem+n ≈ 300. Both the Hungarian algorithm and
greedy method operate directly on the original un-filtered matrix. Figures 5(a)
and 5(b) show the statistics of ηp:h and ηg:h (note that ηp:h, ηg:h ∈ [1,+∞), and
a value of η is close to 1 denotes good performance). Figure 5(a) shows that
the partition based algorithm works well when ρ is small (the utility matrix is
sparse) and the robot-to-task ratio is close to 1 (the utility matrix is square,
i.e., the number of robots and tasks are balanced). In contrast, Figure 5(b)

∗More precisely, a greedy choice can be employed locally, which is distinct from the Greedy
Algorithm but is the same in spirit.

shows that a greedy selection works well for the opposite conditions: greater
numbers of utilities and the case of many redundant tasks. This means that
to achieve certain accuracy, the greedy method requires much more task utility
information for each robot than the partition based algorithm does. Moreover,
in the region where our partitioning algorithm works well, the standard devi-
ations for ηg:h are much bigger than those for ηp:h, suggesting that the greedy
algorithm’s performance depends more critically on the particular values and
ordering artifacts. Figure 5(c) combines ηp:h and ηg:h together, where the blue
bars represent ηp:h and maroon bars denote ηg:h, from which comparative per-
formance is more directly observable in detail. However, as discussed in sparsity
analysis, choosing too small a value for ρ may remove too many utilities and
thereby reduce the assignment quality.

We have also tested the assignment performance under different numbers
of partitions for a system size of around 300, while maintaining in a square
shape. The result is shown in Figure 6. We analyse the ηp:h as well as the
total number of re-adjustments of all partitions (for correcting invalid random
assignments), along with changing the number of partitions K ∈ [2, 20]. The
results indicate better performance when K is small, and ηp:h converges to some
value around 1.6 as K increases. However, the number of re-adjustments in-
creases monotonically with increasing K. Note that the turning point for K in
the two plots is K ≈ 14. After the turning point, ηp:h essentially becomes a
constant value but the number of re-adjustments becomes significant. The turn-
ing point fits the theoretical upper bound of K discussed in Section 5.3 well,
i.e., K = 1/ρ(q) ≈ n/N(q) = 150/10 = 15. This indicates that for K greater
than the upper bound, the performance is reduced by extensive inspections and
re-adjustments of the uncertain assignments, which undermines the decentral-
ization.

6.3 Online Assignment for Dynamic Utilities

Our algorithm is expected to perform well for online assignment problems
with dynamic utilities. In order to simulate such dynamics, we permit tasks
locations to “drift” with different velocities so that both robots and tasks keep
moving and the utility matrix varies over time. Following procedures of Algo-
rithm 1, a global leader is randomly selected to be responsible for aggregating the
global utilities. Then the filtered utility matrix is partitioned and the resultant
assignment table is distributed to a set of sub-leaders. The sub-leaders of each
partition periodically (at frequency that is sufficient to capture the dynamics of
the utility values) collect the utilities from other robots in the same partition.
They use these to decide whether reassignment or repartitioning is necessary
based on the online sparsity observations and which sub-leader(s) should be
contacted to merge interrelated blocks. In our experiments, we purposefully
manipulate the spatially nearby partitions to interact with each other to form
interrelated blocks.

Figure 8 provides an example of how the online assignment works with dy-
namic tasks. In Figure 7(a) there are 5 partitions obtained by partitioning the

0 2 4 6 8 10 12 14 16 18 20 22
0.5

1

1.5

2

2.5

η p:
h

Performances of K−partitioning

0 2 4 6 8 10 12 14 16 18 20 22
0

30

60

90

120

#a
dj

us
tm

en
ts

K

Figure 6: Partitioning-based assignment performances with regard to differing
numbers of partitions.

initial sparse utility matrix; the partitioning result is easily seen in Figure 7(b).
In Figure 7(c) the tasks of the first 2 partitions, P1 and P2, gradually diffuse
into the other partitions, which correspond to the addition of non-void utility
values in interrelated blocks. This is most clearly visible in Figure 7(d). This
interrelationship between the partitions is detected locally and a repartitioning
is prompted. The new partitions P

′

1 and P
′

2 as well as the corresponding new
block matrix are shown in Figures 7(e) and 7(f), respectively.

One problem specific to the online assignment is determining an appropriate
threshold number Nr, which controls the frequency of restarts. Restarts become
necessary after many iterations of the coalescence and repartitioning, since the
initial global features gradually become stale. The impact of different Nr’s are
illustrated in Figure 8 from a typical online experiment with designated assign-
ment solution quality q = 85%. With regard to this solution quality, the actual
sparsity ρ̂ is observed and compared with the theoretical threshold ρ(q). If the
condition ρ̂ < ρ(q) is satisfied, a repartitioning is triggered and the sub-leader’s
repartitioning count is incremented. The x-axis ticks show the sequence of repar-
titionings because we are most interested in the optima immediately after the
moments of repartitioning. The y-axis denotes the actual assignment solution
quality (normalized, as before, with respect to the centralized optimum). The
three curves of Figure 8 are the results of Nr = 10, 20, 30, respectively. From
the figure we can see that a very large value of Nr may cause the solution qual-
ity to deteriorate greatly. Currently, Nr is treated as an empirically determined
parameter which depends significantly on the level of task dynamics. Since this

(a) (b)

(c) (d)

(e) (f)

Figure 7: On-line assignment in a dynamic environment. (a)–(b) Original par-
titioned assignment and block matrix; (c)–(d) Partitions P1 and P2 are merging
together, and correspondingly the interrelated blocks diffuse into each other;
(e)–(f) The repartitioned P

′

1 and P
′

2 and corresponding block matrix.

Figure 8: Online assignment qualities observed under different periodical lengths
of global refreshments. A sudden increase of the solution quality indicates an
operation of repartitioning.

is the online assignment problem, one good way to determine Nr is to embed it
in a learning procedure so that this empirical value can be adapted online.

6.4 Practical Running Time

We also investigated the practical running times for the method. The initial
phase involving the matrix processing and partitioning (lines 1–4 in Algorithm 1)
is computed by the global leader and is the most computationally expensive step.
Since it dominates the running time of an online assignment, we compare this
phase with the CPU times from the centralized Hungarian algorithm (an efficient
O(n3) time complexity implementation) and the distributed greedy method as
we have described, respectively.

The experiments focus on the case of square matrices and employ an IBM
Thinkpad laptop with 1.60GHz CPU and 2GB of memory. The PaToH software
was used as the partitioning tool. Our experience is that hMeTis can be faster in
practice, so the reported performance should be interpreted as reflective of the
broader class of tools and can be improved with tuning. Even so, the partitioning
tool is extremely fast, e.g., the time to partition a 1000 × 1000 matrix into
fewer than 10 partitions takes under 1 second. The results show that even
though these partitioning computations dominate the first-phase, the overall
running time is still much reduced in comparison with the optimal centralized
method. Figure 9(a) presents the timing data for 500 × 500 matrices. The
leftmost bar is the running time for the centralized method (i.e., solution via the
Hungarian algorithm with the state-of-art time complexity) and the rightmost

(a) (b)

Figure 9: (a) Comparisons of practical running time among the state-of-art cen-
tralized algorithm, the greedy method, and our approach; (b) Detailed break-
down of the compute time for the different elements of the partitioning method.

bar is for the greedy method. The three bars in the center are the time for
the partitioning approach, with the number of partitions labelled along the
horizontal axis. (Note that in these cases, the global leader is also a member
robot and is also allocated sub-assignment; time for solving this sub-assignment
is included in the measurement.) We can see that the centralized algorithm
is most costly, while the greedy method is the fastest, with the partitioning
approach falling between them. When the number of partitions K grows, the
overall time also increases slightly due to the additional cost of the partitioning
operations.

Figure 9(b) presents statistics for different numbers of robots and tasks. The
curve above the stacked bars shows the running time of the centralized Hun-
garian method. There are five groups of bars and each group gives statistics for
matrices with a particular number of robots. Also, in each group, two adjacent
stacked bars represent the results for K = 5 and K = 10, respectively. Every
stacked bar contains three parts: recording the CPU times of the partitioning
operations (middle of the stack), solving a sub-assignment (bottom of the stack),
and other processing operations such as the matrix filtering (top of the stack).
The figure shows that the total running time of the partitioning method is less
than the fastest centralized time, even for the most expensive phase. Moreover,
as K increases, the time to solve sub-assignments decreases whereas the time
for partitioning increases, and that it comes to dominate the overall time. After
the first-phase, the sub-assignment problems that require much less time are
distributed to sub-leaders and carried out simultaneously.

7 DISCUSSION

7.1 Complexity Analysis and Features of the Algorithm

If we consider the parallelism introduced via multiple decision-making agents
which solve part of the assignment problem, then the partitioning algorithm im-
proves the time complexity over the centralized solution. First, the partitioning
of the initial global assignment requires O(n3)†, where n denotes the number
of tasks. Then, during the on-line assignment, the time complexity for each
sub-leading agent to collect and filter the utility matrix as well as to check the
interrelated blocks is O(K · (n

K
)2); to solve the sub-assignment problem, the

Hungarian algorithm costs O((n
K
)3); there may be repartitioning of the inter-

related blocks, which requires O((l·n
K
)3), where l is the number of interrelated

diagonal blocks and (l·n
K
) actually denotes the column size of interrelated matrix

as illustrated in Figure 2(b)). Since l usually is much smaller than K for a large
system (occurring only among the neighboring partitions), and it executes less
frequently (occurring only at the moment when repartitioning is triggered), we
conclude that the overall running time for the dynamic assignment is generally
reduced by a factor of K3 compared with the centralized algorithm, which al-
ways requires a running time of O(n3). Note that K need not necessarily be a
constant, but can be a variable as a function of the system size, e.g., K =

√
n.

In addition, the overall communication and computation work is also greatly
reduced by eliminating transmission of trivial utilities, e.g., for a system involv-
ing more than 100 robots, the sparsity parameter ρ can be less than 0.1, meaning
that we only communicate and compute fewer than 10% of all utilities in our
assignment. Apart from the first phase, in our problem domain communication
is spatially localized to other robots within the same partition. Another benefit
of such sparsity processing is the improved time complexity of the centralized
assignment algorithm that happens during the first phase. Since the algorithm
is fed with a sparse utility matrix, the actual time complexity can be less than
the given complexity of O(n3) which is produced by analyzing a complete ma-
trix [Kuhn, 1955; Bertsekas, 1990] — e.g., it may be reduced by an order if each
row has small fixed number of non-zero utilities as in our case.

The introduction of multiple decision making agents also addresses the draw-
back of limited robustness in traditional centralized algorithms. The failure of
a single sub-leading agent will not halt the whole assignment task, instead the
impact of the failure remains local to a given partition. Naturally it is also pos-
sible for the failure to be automatically addressed along with the repartitioning
of merged partitions.

†We assume the multi-level partitioning algorithm costs O(n3) for an n×nmatrix, although
it has been empirically demonstrated to be much faster [Karypis and Kumar, 1998] than the
spectral partitioning method, which has a running time complexity of O(n3) dominated by
computing the eigenvectors.

(a) (b)

Figure 10: (a) Surveillance/monitoring a set of moving objects
(#robots < #tasks); (b) Box-pushing by a team of robots (#robots > #tasks).

7.2 Applications to Robotics

The purpose of our simple simulation scenario presented in the experiments
section is to clearly demonstrate the operating principles of the partitioning and
distribution strategy in multi-robot task assignment problems. The approach
may certainly be applied to a variety of different task allocation problems so long
as the performance of individual tasks can be represented with a utility estimate
and a global utility matrix can be constructed. Once the assignment problem
is (recursively) partitioned into the appropriate base level of sub-assignments,
different task allocation strategies for solving these sub-problems can be em-
ployed. The numbers of robots and tasks may be unbalanced in each partition.
If a traditional matching method (e.g., the Hungarian algorithm) is used, each
robot will execute one task at one time. On completion of the assigned task, the
robot removes it from the available choices and considers other tasks to perform.
This is repeated until all tasks are finished. Other non-matching strategies with
one-to-many or many-to-one mappings (e.g., combinatorial auctions) can also
be employed to solve the sub-assignments depending on specific scenarios.

The following are two examples of concrete applications that can benefit
from partitioning and distributing of task allocation problems:

(1) The surveillance and monitoring of a set of moving objects by multiple mo-
bile robots: Typically these scenarios have fewer robots than tasks and each
robot need be simultaneously assigned to more than one object to monitor.
Figure 10(a) illustrates a localized split of the problem so that sub-assignments
that can be further partitioned or directly solved with any appropriate strate-
gies.

(2) The allocation of a team of robots to push a group of boxes (or other large
tasks requiring collaboration of multiple robots): these are representative of
scenarios where the number of robots may exceed the number of tasks. An
example showing a partitioned assignment is shown in Figure 10(b). In these
cases, the merging and repartitioning of the sub-assignments can also be trig-
gered by certain interruptions, e.g., detection that a box is stuck on a slope
or is no longer moving forward. To employ the presented approach on these
particular applications is an area of future work.

Finally, our experience suggests that the method works especially well when
the changes of utilities are smooth and comparatively slow; problems with ex-
tremely irregular utility changes (e.g., following the step function or pulse func-
tion,etc.) can be improved by employing a mechanism to trigger local reparti-
tioning using cues other than shifts in utility density.

8 CONCLUSION

In this paper, we propose a method with attractive accuracy, speed and ro-
bustness for large-scale online assignment problems. The approach employs a
top-down approach which permits the problem to be distributed and informa-
tion to be localized wherever possible. We demonstrated the effectiveness of
the proposed algorithm and showed the efficiency with simulation experiments.
The algorithm’s performance is most promising for large problems when task
dynamics require reallocation and for which task locality (in space and time)
and sparsity can be exploited.

The algorithm described in this paper makes use of structure within the
utility matrix rather than models of specific task properties. Regularity that
exists due to the specific tasks being performed results in a structure for the
team. Since this multi-level organization of the system is derived automatically,
it can be adjusted (and re-generated) to reflect changes to tasks themselves.
We believe this approach to be an important middle ground between entirely
domain-independent planning mechanisms and highly specialized task-specific
models.

Acknowledgments

The authors thank G. Karypis, Ü. Çatalyürek and B. Hendrickson for providing
useful tools and/or suggestions.

References

[Arafeh et al., 2008] B. R. Arafeh, K. Day, and A. Touzene. A Multilevel
Partitioning Approach for Efficient Tasks Allocation in Heterogeneous Dis-
tributed Systems. Journal of Systems Architecture – Embedded Systems De-
sign, 54(5):530–548, 2008.

[Aykanat et al., 2002] Cevdet Aykanat, Ali Pinar, and Ümit V. Çatalyürek.
Permuting Sparse Rectangular Matrices into Block-Diagonal Form. SIAM
Journal on Scientific Computing, 25:1860–1879, 2002.

[Berhault et al., 2003] Marc Berhault, He Huang, Pinar Keskinocak, Sven
Koenig, Wedad Elmaghraby, Paul Griffin, and Anton J. Kleywegt. Robot
Exploration with Combinatorial Auctions. In Proc. of IEEE/RSJ Intern.
Conf. on Intelligent Robots and Systems (IROS’03), pages 1957–1962, Las
Vegas, NV, U.S.A., October 2003.

[Bertsekas and Castanon, 1991] D. P. Bertsekas and D. A. Castanon. Parallel
Synchronous and Asynchronous Implementations of the Auction Algorithm.
Parallel Computing, 17:707–732, 1991.

[Bertsekas, 1990] D. P. Bertsekas. The Auction Algorithm for Assignment and
Other Network Flow Problems: A Tutorial. Interfaces, 1990.

[Cao et al., 1997] Y. Uny Cao, Alex S. Fukunaga, and A. B. Kahng. Coop-
erative Mobile Robotics: Antecedents and Directions. Autonomous Robots,
4:226–234, 1997.

[Choi et al., 2009] Han-Lim Choi, L. Brunet, and J.P. How. Consensus-Based
Decentralized Auctions for Robust Task Allocation. IEEE Transactions on
Robotics, 25(4):912 –926, aug. 2009.

[Dhillon, 2001] Inderjit S. Dhillon. Co-clustering documents and words using
Bipartite Spectral Graph Partitioning. In Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining, pages 269–274, San Francisco, CA,
2001.

[Dias et al., 2006] M. Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony
Stentz. Market-based Multirobot Coordination: A Survey and Analysis.
Proceedings of the IEEE—Special Issue on Multi-robot Systems, 94(7):1257–
1270, July 2006.

[Fiduccia and Mattheyse, 1982] C. Fiduccia and R. Mattheyse. A Linear Time
Heuristic for Improving Network Partitions. Proc. 19th ACM/IEEE Design
Automation Conference, 49:175–181, 1982.

[Garey et al., 1974] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some
Simplified NP-complete Problems. In STOC ’74: Proceedings of the sixth
annual ACM symposium on Theory of computing, pages 47–63, 1974.

[Gerkey and Matarić, 2004] Brian Gerkey and Maja J Matarić. A Formal Anal-
ysis and Taxonomy of Task Allocation in Multi-robot Systems. International
Journal of Robotics Research, 23(9):939–954, September 2004.

[Gilbert et al., 1995] John R. Gilbert, Gary L. Miller, and Shang-Hua Teng.
Geometric Mesh Partitioning: Implementation and Experiments. In Proc.
International Parallel Processing Symposium, pages 418–427, 1995.

[Goldberg et al., 2003] Dani Goldberg, Vincent A. Cicirello, M. Bernardine
Dias, Reid G. Simmons, Stephen F. Smith, and Anthony Stentz. Task Alloca-
tion Using a Distributed Market-based Planning Mechanism. In Proceedings
of the International Joint Conference on Autonomous Agents & Multiagent
Systems, (AAMAS), pages 996–997, Melbourne, Australia, 2003.

[Hendrickson and Leland, 1993] Bruce Hendrickson and Robert Leland. A Mul-
tilevel Algorithm for Partitioning Graphs. Technical Report SAND93-1301,
1993.

[Hendrickson et al., 1998] Bruce Hendrickson, Tamara, and G. Kolda. Parti-
tioning Rectangular And Structurally Nonsymmetric Sparse Matrices For
Parallel Processing. SIAM J. Sci. Comput, 21:2048–2072, 1998.

[Ji et al., 2006] M. Ji, S. Azuma, and M. Egerstedt. Role-Assignment in Multi-
Agent Coordination. International Journal of Assistive Robotics and Mecha-
tronics, 7(1):32–40, March 2006.

[Kalra and Martinoli, 2006] Nidhi Kalra and Alcherio Martinoli. A Compara-
tive Study of Market-Based and Threshold-Based Task Allocation. In Proc.
of the International Symposium on Distributed Autonomous Robotic Systems,
Minneapolis, MM, 2006.

[Karypis and Kumar, 1998] George Karypis and Vipin Kumar. A Fast and High
Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal
on Scientific Computing, 20:359–392, 1998.

[Kernighan and Lin, 1970] B.W. Kernighan and S. Lin. An Efficient Heuristic
Procedure for Partitioning Graphics. The Bell System Technical Journal,
49:291–307, 1970.

[Kloder and Hutchinson, 2006] S. Kloder and S. Hutchinson. Path Planning
for Permutation-Invariant Multirobot Formations. IEEE Transactions on
Robotics, 22(4):650–665, August 2006.

[Kolda, 1998] Tamara G. Kolda. Partitioning Sparse Rectangular Matrices for
Parallel Processing. In LNCS, pages 68–79, 1998.

[Kuhn, 1955] H. W. Kuhn. The Hungarian Method for the Assignment Prob-
lem. Naval Research Logistic Quarterly, 2:8397, 1955.

[Lerman et al., 2006] Kristina Lerman, Chris Jones, Aram Galstyan, and Maja
J. Analysis of dynamic task allocation in multi-robot systems. International
Journal of Robotics Research, 25:225–242, 2006.

[Liu and Shell, 2011] Lantao Liu and Dylan Shell. Assessing Optimal Assign-
ment under Uncertainty: An Interval-based Algorithm. The International
Journal of Robotics Research, 30(7):936–953, 2011.

[Melo and Veloso, 2011] Francisco S. Melo and Manuela Veloso. Decentralized
MDPs with Sparse Interactions. Artificial Intelligence, 175(11):1757–1789,
2011.

[Michael et al., 2008] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas.
Distributed Multi-Robot Task Assignment and Formation Control. In IEEE
International Conference on Robotics and Automation, Pasadena, CA, May
2008.

[Miller et al., 1993] Gary L. Miller, Shang-Hua Teng, William Thurston, and
Stephen A. Vavasis. Automatic Mesh Partitioning. In Alan George et. al, ed-
itor, Graphs Theory and Sparse Matrix Computation, pages 57–84. Springer-
Verlag, 1993.

[Papa and Markov, 2007] David A. Papa and Igor L. Markov. Hypergraph Par-
titioning and Clustering. In Approximation Algorithms and Metaheuristics,
2007.

[Pothen et al., 1990] Alex Pothen, H.D. Simmon, and K.-P.Liou. Partitioning
Sparse Matrices with Eigenvectors of Graphs . SIAM J. Matrix Anal. Appl.,
11:430–452, 1990.

[Russell and Norvig, 2009] Stuart J. Russell and Peter Norvig. Artificial Intel-
ligence: A Modern Approach. Prentice-Hall, Inc., Upper Saddle River, NJ,
U.S.A., third edition, 2009.

[Simmons et al., 2002] Reid Simmons, Trey Smith, M. Bernardine Dias, Dani
Goldberg, David Hershberger, Anthony Stentz, and Robert Zlot. A layered
architecture for coordination of mobile robots. In Multi-Robot Systems: From
Swarms to Intelligent Automata, 2002.

[Smith and Bullo, 2009] S. L. Smith and F. Bullo. Monotonic Target Assign-
ment for Robotic Networks. IEEE Transactions on Automatic Control,
54(9):2042–2057, September 2009.

[Tang and Parker, 2007] F. Tang and L. E. Parker. A Complete Methodology
for Generating Multi-robot Task Solutions Using ASyMTRe-D and Market-
based Task Allocation. In Proc. of IEEE International Conference on Robotics
and Automation (ICRA’93), pages 3351–3358, 2007.

[Toroslu and Üçoluk, 2007] Ismail H. Toroslu and Göktürk Üçoluk. Incremental
Assignment Problem. Information Sciences, March 2007.

[Ümit V. Çatalyürek and Aykanat, 1999] Ümit V. Çatalyürek and Cevdet
Aykanat. Hypergraph-Partitioning Based Decomposition for Parallel Sparse-
Matrix Vector Multiplication. IEEE Trans. on Parallel and Dist. Computing,
10:673–693, 1999.

[Zavlanos and Pappas, 2008] M. M. Zavlanos and G. J. Pappas. Dynamic As-
signment in Distributed Motion Planning with Local Coordination. IEEE
Transactions on Robotics, 24(1):232–242, February 2008.

[Zavlanos et al., 2008] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas. A
Distributed Auction Algorithm for the Assignment Problem. In Proceedings
of the IEEE Conference on Decision and Control, pages 1212–1217, Cancun,
Mexico, December 2008.

[Zlot and Stentz, 2003] Robert Zlot and Anthony Stentz. Market-based Multi-
robot Coordination Using Task Abstraction. In The 4th International Con-
ference on Field and Service Robotics, 2003.

